
9
Coroutines

A coroutine is similar to a thread (in the sense of multithreading): a line of
execution, with its own stack, its own local variables, and its own instruc-
tion pointer; but sharing global variables and mostly anything else with other
coroutines. The main difference between threads and coroutines is that, con-
ceptually (or literally, in a multiprocessor machine), a program with threads
runs several threads concurrently. Coroutines, on the other hand, are collab-
orative: A program with coroutines is, at any given time, running only one of
its coroutines and this running coroutine only suspends its execution when it
explicitly requests to be suspended.

Coroutine is a powerful concept. As such, several of its main uses are
complex. Do not worry if you do not understand some of the examples in this
chapter on your first reading. You can read the rest of the book and come back
here later. But please come back. It will be time well spent.

9.1 Coroutine Basics
Lua offers all its coroutine functions packed in the coroutine table. The
create function creates new coroutines. It has a single argument, a function
with the code that the coroutine will run. It returns a value of type thread,
which represents the new coroutine. Quite often, the argument to create is an
anonymous function, like here:

co = coroutine.create(function ()

print("hi")

end)

print(co) --> thread: 0x8071d98

A coroutine can be in one of three different states: suspended, running, and
dead. When we create a coroutine, it starts in the suspended state. That means
that a coroutine does not run its body automatically when we create it. We can
check the state of a coroutine with the status function:

print(coroutine.status(co)) --> suspended

67



68 Chapter 9: Coroutines

The function coroutine.resume (re)starts the execution of a coroutine, chang-
ing its state from suspended to running:

coroutine.resume(co) --> hi

In this example, the coroutine body simply prints “hi” and terminates, leaving
the coroutine in the dead state, from which it cannot return:

print(coroutine.status(co)) --> dead

Until now, coroutines look like nothing more than a complicated way to call
functions. The real power of coroutines stems from the yield function, which
allows a running coroutine to suspend its execution so that it can be resumed
later. Let us see a simple example:

co = coroutine.create(function ()

for i=1,10 do

print("co", i)

coroutine.yield()

end

end)

Now, when we resume this coroutine, it starts its execution and runs until the
first yield:

coroutine.resume(co) --> co 1

If we check its status, we can see that the coroutine is suspended and therefore
can be resumed again:

print(coroutine.status(co)) --> suspended

From the coroutine’s point of view, all activity that happens while it is sus-
pended is happening inside its call to yield. When we resume the coroutine,
this call to yield finally returns and the coroutine continues its execution until
the next yield or until its end:

coroutine.resume(co) --> co 2

coroutine.resume(co) --> co 3

...

coroutine.resume(co) --> co 10

coroutine.resume(co) -- prints nothing

During the last call to resume, the coroutine body finished the loop and then
returned, so the coroutine is dead now. If we try to resume it again, resume
returns false plus an error message:



9.1 Coroutine Basics 69

print(coroutine.resume(co))

--> false cannot resume dead coroutine

Note that resume runs in protected mode. Therefore, if there is any error inside
a coroutine, Lua will not show the error message, but instead will return it to
the resume call.

A useful facility in Lua is that a pair resume–yield can exchange data
between them. The first resume, which has no corresponding yield waiting
for it, passes its extra arguments as arguments to the coroutine main function:

co = coroutine.create(function (a,b,c)

print("co", a,b,c)

end)

coroutine.resume(co, 1, 2, 3) --> co 1 2 3

A call to resume returns, after the true that signals no errors, any arguments
passed to the corresponding yield:

co = coroutine.create(function (a,b)

coroutine.yield(a + b, a - b)

end)

print(coroutine.resume(co, 20, 10)) --> true 30 10

Symmetrically, yield returns any extra arguments passed to the corresponding
resume:

co = coroutine.create (function ()

print("co", coroutine.yield())

end)

coroutine.resume(co)

coroutine.resume(co, 4, 5) --> co 4 5

Finally, when a coroutine ends, any values returned by its main function go to
the corresponding resume:

co = coroutine.create(function ()

return 6, 7

end)

print(coroutine.resume(co)) --> true 6 7

We seldom use all these facilities in the same coroutine, but all of them have
their uses.

For those that already know something about coroutines, it is important
to clarify some concepts before we go on. Lua offers what I call asymmetric
coroutines. That means that it has a function to suspend the execution of a
coroutine and a different function to resume a suspended coroutine. Some
other languages offer symmetric coroutines, where there is only one function
to transfer control from any coroutine to another.



70 Chapter 9: Coroutines

Some people call asymmetric coroutine semi-coroutines (because they are
not symmetrical, they are not really co). However, other people use the same
term semi-coroutine to denote a restricted implementation of coroutines, where
a coroutine can only suspend its execution when it is not inside any auxiliary
function, that is, when it has no pending calls in its control stack. In other
words, only the main body of such semi-coroutines can yield. A generator in
Python is an example of this meaning of semi-coroutines.

Unlike the difference between symmetric and asymmetric coroutines, the
difference between coroutines and generators (as presented in Python) is a
deep one; generators are simply not powerful enough to implement several
interesting constructions that we can write with true coroutines. Lua offers
true, asymmetric coroutines. Those that prefer symmetric coroutines can
implement them on top of the asymmetric facilities of Lua. It is an easy task.
(Basically, each transfer does a yield followed by a resume.)

9.2 Pipes and Filters
One of the most paradigmatic examples of coroutines is in the producer–
consumer problem. Let us suppose that we have a function that continually
produces values (e.g., reading them from a file) and another function that con-
tinually consumes these values (e.g., writing them to another file). Typically,
these two functions look like this:

function producer ()

while true do

local x = io.read() -- produce new value

send(x) -- send to consumer

end

end

function consumer ()

while true do

local x = receive() -- receive from producer

io.write(x, "\n") -- consume new value

end

end

(In that implementation, both the producer and the consumer run forever.
It is an easy task to change them to stop when there is no more data to be
handled.) The problem here is how to match send with receive. It is a typical
case of a who-has-the-main-loop problem. Both the producer and the consumer
are active, both have their own main loops, and both assume that the other
is a callable service. For this particular example, it is easy to change the
structure of one of the functions, unrolling its loop and making it a passive
agent. However, this change of structure may be far from easy in other real
scenarios.



9.2 Pipes and Filters 71

Coroutines provide an ideal tool to match producers and consumers, be-
cause a resume–yield pair turns upside-down the typical relationship between
caller and callee. When a coroutine calls yield, it does not enter into a new
function; instead, it returns a pending call (to resume). Similarly, a call to
resume does not start a new function, but returns a call to yield. This property
is exactly what we need to match a send with a receive in such a way that each
one acts as if it were the master and the other the slave. So, receive resumes
the producer so that it can produce a new value; and send yields the new value
back to the consumer:

function receive ()

local status, value = coroutine.resume(producer)

return value

end

function send (x)

coroutine.yield(x)

end

Of course, the producer must now be a coroutine:

producer = coroutine.create(

function ()

while true do

local x = io.read() -- produce new value

send(x)

end

end)

In this design, the program starts calling the consumer. When the consumer
needs an item, it resumes the producer, which runs until it has an item to give
to the consumer, and then stops until the consumer restarts it again. Therefore,
we have what we call a consumer-driven design.

We can extend this design with filters, which are tasks that sit between the
producer and the consumer doing some kind of transformation in the data. A
filter is a consumer and a producer at the same time, so it resumes a producer
to get new values and yields the transformed values to a consumer. As a trivial
example, we can add to our previous code a filter that inserts a line number at
the beginning of each line. The complete code would be like this:

function receive (prod)

local status, value = coroutine.resume(prod)

return value

end

function send (x)

coroutine.yield(x)

end



72 Chapter 9: Coroutines

function producer ()

return coroutine.create(function ()

while true do

local x = io.read() -- produce new value

send(x)

end

end)

end

function filter (prod)

return coroutine.create(function ()

local line = 1

while true do

local x = receive(prod) -- get new value

x = string.format("%5d %s", line, x)

send(x) -- send it to consumer

line = line + 1

end

end)

end

function consumer (prod)

while true do

local x = receive(prod) -- get new value

io.write(x, "\n") -- consume new value

end

end

The final bit simply creates the components it needs, connects them, and starts
the final consumer:

p = producer()

f = filter(p)

consumer(f)

Or better yet:

consumer(filter(producer()))

If you thought about Unix pipes after reading the previous example, you are
not alone. After all, coroutines are a kind of (non-preemptive) multithreading.
While in pipes each task runs in a separate process, with coroutines each
task runs in a separate coroutine. Pipes provide a buffer between the writer
(producer) and the reader (consumer) so there is some freedom in their relative
speeds. This is important in the context of pipes, because the cost of switching
between processes is high. With coroutines, the cost of switching between tasks
is much smaller (roughly the same cost of a function call), so the writer and the
reader can go hand in hand.



9.3 Coroutines as Iterators 73

9.3 Coroutines as Iterators
We can see loop iterators as a quite specific example of the producer–consumer
pattern. An iterator produces items to be consumed by the loop body. There-
fore, it seems appropriate to use coroutines to write iterators. Actually, corou-
tines provide a powerful tool for this task. Again, the key feature is their ability
to turn upside-down the relationship between caller and callee. With this fea-
ture, we can write iterators without worrying about how to keep state between
successive calls to the iterator.

To illustrate this kind of use, let us write an iterator to traverse all permu-
tations of a given array. It is not an easy task to write directly such iterator,
but it is not so difficult to write a recursive function that generates all those
permutations. The idea is simple: Put each array element in the last position,
in turn, and recursively generate all permutations of the remaining elements.
The code is as follows:

function permgen (a, n)

if n == 0 then

printResult(a)

else

for i=1,n do

-- put i-th element as the last one

a[n], a[i] = a[i], a[n]

-- generate all permutations of the other elements

permgen(a, n - 1)

-- restore i-th element

a[n], a[i] = a[i], a[n]

end

end

end

To see it working, we should define an appropriate printResult function and
call permget with proper arguments:

function printResult (a)

for i,v in ipairs(a) do

io.write(v, " ")

end

io.write("\n")

end

permgen ({1,2,3,4}, 4)

After we have the generator ready, it is an automatic task to convert it to
an iterator. First, we change printResult to yield:



74 Chapter 9: Coroutines

function permgen (a, n)

if n == 0 then

coroutine.yield(a)

else

...

Then, we define a factory that arranges for the generator to run inside a
coroutine, and then create the iterator function. The iterator simply resumes
the coroutine to produce the next permutation:

function perm (a)

local n = table.getn(a)

local co = coroutine.create(function () permgen(a, n) end)

return function () -- iterator

local code, res = coroutine.resume(co)

return res

end

end

With that machinery in place, it is trivial to iterate over all permutations of an
array with a for statement:

for p in perm{"a", "b", "c"} do

printResult(p)

end

--> b c a

--> c b a

--> c a b

--> a c b

--> b a c

--> a b c

The perm function uses a common pattern in Lua, which packs a call to
resume with its corresponding coroutine inside a function. This pattern is
so common that Lua provides a special function for it: coroutine.wrap. Like
create, wrap creates a new coroutine. Unlike create, wrap does not return the
coroutine itself; instead, it returns a function that, when called, resumes the
coroutine. Unlike the original resume, that function does not return an error
code as its first result; instead, it raises the error in case of errors. Using wrap,
we can write perm as follows:

function perm (a)

local n = table.getn(a)

return coroutine.wrap(function () permgen(a, n) end)

end

Usually, coroutine.wrap is simpler to use than coroutine.create. It gives
us exactly what we need from a coroutine: a function to resume it. However, it
is also less flexible. There is no way to check the status of a coroutine created
with wrap. Moreover, we cannot check for errors.



9.4 Non-Preemptive Multithreading 75

9.4 Non-Preemptive Multithreading
As we saw earlier, coroutines are a kind of collaborative multithreading. Each
coroutine is equivalent to a thread. A pair yield–resume switches control from
one thread to another. However, unlike “real” multithreading, coroutines are
non preemptive. While a coroutine is running, it cannot be stopped from the
outside. It only suspends execution when it explicitly requests so (through a
call to yield). For several applications this is not a problem, quite the opposite.
Programming is much easier in the absence of preemption. You do not need
to be paranoid about synchronization bugs, because all synchronization among
threads is explicit in the program. You only have to ensure that a coroutine
only yields when it is outside a critical region.

However, with non-preemptive multithreading, whenever any thread calls
a blocking operation, the whole program blocks until the operation completes.
For most applications, this is an unacceptable behavior, which leads many
programmers to disregard coroutines as a real alternative to conventional
multithreading. As we will see here, that problem has an interesting (and
obvious, with hindsight) solution.

Let us assume a typical multithreading situation: We want to download
several remote files through HTTP. Of course, to download several remote
files, we must know how to download one remote file. In this example, we will
use the LuaSocket library, developed by Diego Nehab. To download a file, we
must open a connection to its site, send a request to the file, receive the file
(in blocks), and close the connection. In Lua, we can write this task as follows.
First, we load the LuaSocket library:

require "luasocket"

Then, we define the host and the file we want to download. In this example,
we will download the HTML 3.2 Reference Specification from the World Wide
Web Consortium site:

host = "www.w3.org"

file = "/TR/REC-html32.html"

Then, we open a TCP connection to port 80 (the standard port for HTTP
connections) of that site:

c = assert(socket.connect(host, 80))

The operation returns a connection object, which we use to send the file
request:

c:send("GET " .. file .. " HTTP/1.0\r\n\r\n")

Next, we read the file in blocks of 1 KB, writing each block to the standard
output:

while true do

local s, status = c:receive(2^10)

io.write(s)

if status == "closed" then break end

end



76 Chapter 9: Coroutines

The receive method always returns a string with what it read plus another
string with the status of the operation. When the host closes the connection we
break the receive loop.

Finally, we close the connection:

c:close()

Now that we know how to download one file, let us return to the problem of
downloading several files. The trivial approach is to download one at a time.
However, this sequential approach, where we only start reading a file after
finishing the previous one, is too slow. When reading a remote file, a program
spends most of its time waiting for data to arrive. More specifically, it spends
most of its time blocked in the call to receive. So, the program could run
much faster if it downloaded all files simultaneously. Then, while a connection
has no data available, the program can read from another connection. Clearly,
coroutines offer a convenient way to structure those simultaneous downloads.
We create a new thread for each download task. When a thread has no
data available, it yields control to a simple dispatcher, which invokes another
thread.

To rewrite the program with coroutines, let us first rewrite the previous
download code as a function:

function download (host, file)

local c = assert(socket.connect(host, 80))

local count = 0 -- counts number of bytes read

c:send("GET " .. file .. " HTTP/1.0\r\n\r\n")

while true do

local s, status = receive(c)

count = count + string.len(s)

if status == "closed" then break end

end

c:close()

print(file, count)

end

Because we are not interested in the remote file contents, this function only
counts the file size, instead of writing the file to the standard output. (With
several threads reading several files, the output would intermix all files.) In
this new code, we use an auxiliary function (receive) to receive data from the
connection. In the sequential approach, its code would be like this:

function receive (connection)

return connection:receive(2^10)

end

For the concurrent implementation, this function must receive data without
blocking. Instead, if there is not enough data available, it yields. The new code
is like this:



9.4 Non-Preemptive Multithreading 77

function receive (connection)

connection:timeout(0) -- do not block

local s, status = connection:receive(2^10)

if status == "timeout" then

coroutine.yield(connection)

end

return s, status

end

The call to timeout(0) makes any operation over the connection a non-blocking
operation. When the operation status is “timeout”, it means that the operation
returned without completion. In this case, the thread yields. The non-false
argument passed to yield signals to the dispatcher that the thread is still
performing its task. (Later we will see another version where the dispatcher
needs the timed-out connection.) Notice that, even in case of a timeout, the
connection returns what it read until the timeout, so receive always returns
s to its caller.

The next function ensures that each download runs in an individual thread:

threads = {} -- list of all live threads

function get (host, file)

-- create coroutine

local co = coroutine.create(function ()

download(host, file)

end)

-- insert it in the list

table.insert(threads, co)

end

The table threads keeps a list of all live threads, for the dispatcher.
The dispatcher is simple. It is mainly a loop that goes through all threads,

calling one by one. It must also remove from the list the threads that finish
their tasks. It stops the loop when there are no more threads to run:

function dispatcher ()

while true do

local n = table.getn(threads)

if n == 0 then break end -- no more threads to run

for i=1,n do

local status, res = coroutine.resume(threads[i])

if not res then -- thread finished its task?

table.remove(threads, i)

break

end

end

end

end



78 Chapter 9: Coroutines

Finally, the main program creates the threads it needs and calls the dis-
patcher. For instance, to download four documents from the W3C site, the
main program could be like this:

host = "www.w3.org"

get(host, "/TR/html401/html40.txt")

get(host,"/TR/2002/REC-xhtml1-20020801/xhtml1.pdf")

get(host,"/TR/REC-html32.html")

get(host,

"/TR/2000/REC-DOM-Level-2-Core-20001113/DOM2-Core.txt")

dispatcher() -- main loop

My machine takes six seconds to download those four files using coroutines.
With the sequential implementation, it takes more than twice that time (15
seconds).

Despite the speedup, this last implementation is far from optimal. Every-
thing goes fine while at least one thread has something to read. However, when
no thread has data to read, the dispatcher does a busy wait, going from thread
to thread only to check that they still have no data. As a result, this coroutine
implementation uses almost 30 times more CPU than the sequential solution.

To avoid this behavior, we can use the select function from LuaSocket.
It allows a program to block while waiting for a status change in a group of
sockets. The changes in our implementation are small. We only have to change
the dispatcher. The new version is like this:

function dispatcher ()

while true do

local n = table.getn(threads)

if n == 0 then break end -- no more threads to run

local connections = {}

for i=1,n do

local status, res = coroutine.resume(threads[i])

if not res then -- thread finished its task?

table.remove(threads, i)

break

else -- timeout

table.insert(connections, res)

end

end

if table.getn(connections) == n then

socket.select(connections)

end

end

end

Along the inner loop, this new dispatcher collects the timed-out connections in
table connections. Remember that receive passes such connections to yield;



9.4 Non-Preemptive Multithreading 79

thus resume returns them. When all connections time out, the dispatcher
calls select to wait for any of those connections to change status. This
final implementation runs as fast as the first implementation with coroutines.
Moreover, as it does no busy waits, it uses just a little more CPU than the
sequential implementation.


