
chapter 69

surface caching and quake's triangle models

are-Assisted Surfaces and Fast
n Without Sprites

In the late OS, I sp summer doing contract programming at a government-
funded installation c theast Solar Energy Center (NESEC). Those were
heady times for solar ith the oil shortages, and there was lots of money
being thrown at pla#s like NESEC, which was growing fast.

e street from MIT, which made for good access to resources.
meant that NESEC was in a severely parking-impaired part of
he student population and Boston’s chronic parking shortage.
did have its own parking lot, but it wasn’t nearly big enough,

because students parked in it at every opportunity. The lot was posted, and cars peri-
odically got towed, but King Canute stood a better chance against the tide than
NESEC did against the student hordes, and late arrivals to work often had to park
blocks away and hike to work, to their considerable displeasure.
Back then, I drove an aging Volvo sedan that was sorely in need of a ring job. It ran fine
but burned a quart of oil every 250 miles, so I carried a case of oil in the trunk, and
checked the level frequently. One day, walking to the computer center a couple of
blocks away, I cut through the parking lot and checked the oil in my car. It was low, so
I topped it off, left the empty oil can next to the car so I would see it and remember
to pick it up to throw out on my way back, and headed toward the computer center.

i’ ;

1 259

I’d gone only a few hundred feet when I heard footsteps and shouting behind me,
and a wild-eyed man in a business suit came running up to me, screaming. “It’s bad
enough you park in our lot, but now you’re leaving your garbage lying around!” he
yelled. “Don’t you people have any sense of decency?” I told him I worked at NESEC
and was going to pick up the can on my way back, and he shouted, “Don’t give me
that!” I repeated my statements, calmly, and told him who I worked for and where
my office was, and he said, “Don’t give me that” again, but with a little less certainty.
I kept adding detail until it was obvious that I was telling the truth, and he suddenly
said, “Oh, my God,” turned red, and started to apologize profusely. A few days later,
we passed in the hallway, and he didn’t look me in the eye.
The interesting point is that there was really no useful outcome that could have
resulted from his outburst. Suppose I had been a student-what would he have ac-
complished by yelling at me? He let his emotions overrule his common sense, and as
a result, did something he later wished he hadn’t. I’ve seen many programmers do
the same thing, especially when they’re working long hours and not feeling adequately
appreciated. For example, some time back I got mail from a programmer who com-
plained bitterly that although he was critical to his company’s success, management
didn’t appreciate his hard work and talent, and asked if I could help him find a
betterjob. I suggested several ways that he might look for anotherjob, but also asked
if he had tried working his problems out with his employers; if he really was that
valuable, what did he have to lose? He admitted he hadn’t, and recently he wrote
back and said that he had talked to his boss, and now he was getting paid a lot more
money, was getting credit for his work, and was just flat-out happy.
We programmers think of ourselves as rational creatures, but most of us get angry at
times, and when we do, like everyone else, we tend to be driven by our emotions
instead of our minds. It’s my experience that thinking rationally under those cir-
cumstances can be difficult, but produces better long-term results every time-so if
you find yourself in that situation, stay cool and think your way through it, and odds
are you’ll be happier down the road.
Of course, most of the time programmers really are rational creatures, and the more
information we have, the better. In that spirit, let’s look at more of the stuff that
makes Quake tick, starting with what I’ve recently learned about surface caching.

Surface Caching with Hardware Assistance
In Chapter 68, I discussed in detail the surface caching technique that Quake uses to
do detailed, highquality lightingwithout lots of polygons. Since writing that chapter, I’ve
gone further, and spent a considerable amount of time working on the port of Quake to
Rendition’s Verite 3-D accelerator chip. So let me start off this chapter by discussing
what I’ve learned about using surface caching in conjunction with hardware.
As you’ll recall, the key to surface caching is that lighting information and polygon
detail are stored separately, with lighting not tied to polygon vertices, then com-

1 260 Chapter 69

bined on demand into what I call surfaces: lit, textured rectangles that are used as the
input to the texture mapper. Building surfaces takes time, so performance is en-
hanced by caching the surfaces from one frame to the next. As I pointed out in
Chapter 68, 3-D hardware accelerators are designed to optimize Gouraud shading,
but surface caching can also work on hardware accelerators, with some significant
quality advantages.
The surface-caching architecture of the Verite version of Quake (which we call
VQuake) is essentially the same as in the software-only version of Quake: The CPU
builds surfaces on demand, which are then downloaded to the accelerator’s memory
and cached there. There are a couple of key differences, however: the need to download
surfaces, and the requirement that the surfaces be in 16-bit-per-pixel (bpp) format.
Downloading surfaces to the accelerator is a performance hit that doesn’t exist in
the software-only version. Although Verite uses DMA to download surfaces, DMA
does in fact steal performance from the CPU. This cost is increased by the require-
ment for 16-bpp surfaces, because twice as much data must be downloaded. Worse
still, it takes about twice as long to build 16-bpp surfaces as 8-bpp surfaces, so the cost
of missing the surface cache is well over twice as expensive in VQuake as in Quake.
Fortunately, there’s 4 MB of memory on Verite-based adapters, so the surface cache
doesn’t miss very often and VQuake runs fine (and looks very good, thanks to bilinear
texture filtering, which by itself is pretty much worth the cost of 3-D hardware), but
it’s nonetheless true that a completely straightforward port of the surface-caching
model is not as appealing for hardware as for software. This is especially true at high
resolutions, where the needs of the surface cache increase due to more detailed
surfaces but available memory decreases due to frame buffer size.
Does my recent experience indicate that as the PC market moves to hardware, there’s
no choice but to move to Gouraud shading, despite the quality issues? Not at all.
First of all, surface caching does still work well, just not as relatively well compared to
Gouraud shading as is the case in software. Second, there are at least two alternatives
that preserve the advantages of surface caching without many of the disadvantages
noted above.

Letting the Graphics Card Build the Textures
One obvious solution is to have the accelerator card build the textures, rather than
having the CPU build and then download them. This eliminates downloading com-
pletely, and lets the accelerator, which should be faster at such things, do the texel
manipulation. Whether this is actually faster depends on whether the CPU or the
accelerator is doing more of the work overall, but it eliminates download time, which
is a big help. This approach retains the ability to composite other effects, such as
splatters and dents, onto surfaces, but by the same token retains the high memory
requirements and dynamic lighting performance impact of the surface cache. It also
requires that the 3-D API and accelerator being used allow drawing into a texture,

Surface Caching and Quake’s Triangle Models 1261

which is not universally true. Neither do all APIs or accelerators allow applications
enough control over the texture heap so that an efficient surface cache can be imple-
mented, a point that favors non-caching approaches. (A similar option that wasn’t
open to us due to time limitations is downloading 8-bpp surfaces and having the
accelerator expand them to l6bpp surfaces as it stores them in texture memory.
Better yet, some accelerators support 8-bpp palettized hardware textures that are
expanded to IGbpp on the fly during texturing.)

The Light Map as Alpha Texture
Another appealing non-caching approach is doing unlit texture-mapping in one pass,
then lighting from the light map as a second pass, using the light map as an alpha
texture. In other words, the textured polygon is drawn first, with no lighting, then
the light map is textured on top of the polygon, with the light map intensity used as
an alpha value to determine how brightly to light each texel. The hardware’s tex-
ture-mapping circuitry is used for both passes, s o the lighting comes out
perspective-correct and consistent under all viewing conditions, just as with the sur-
face cache. The lighting polygons don’t even have to match the texture polygons, so
they can represent dynamically changing lighting.
Two-pass lighting not only looks good, but has no memory footprint other than tex-
ture and light map storage, and provides level performance, because it’s not
dependent on surface cache hit rate. The primary downside to two-pass lighting is
that it requires at least twice as much performance from the accelerator as single-
pass drawing. The current crop of 3-D accelerators is not particularly fast, and few of
them are up to the task of doing two passes at high resolution, although that will
change soon. Another potential problem is that some accelerators don’t implement
true alpha blending. Nonetheless, as accelerators get better, I expect two-pass draw-
ing (or three-or-more-pass, for adding splatters and the like by overlaying sprite
polygons) to be widely used. I also expect Gouraud shading to be widely used; it’s
easy to use and fast. Also, speedier CPUs and accelerators will enable much more
detailed geometry to be used, and the smaller that polygons become, the better
Gouraud shading looks compared to surface caching and two-pass lighting.
The next graphics engine you’ll see from id Software will be oriented heavily toward
hardware accelerators, and at this point it’s a tossup whether the engine will use
surface caching, Gouraud shading, or two-pass lighting.

Drawing Triangle Models
Most of the last group of chapters in this book discuss how Quake works. If you look
closely, though, you’ll see that almost all of the information is about drawing the
world-the static walls, floors, ceilings, and such. There are several reasons for this,
in particular that it’s hard to get a world renderer working well, and that the world is the
base on which everything else is drawn. However, moving entities, such as monsters,

1262 Chapter 69

are essential to a useful game engine. Traditionally, these have been done with sprites,
but when we set out 1.0 build Quake, we knew that it was time to move on to polygon-
based models. (In the case of Quake, the models are composed of triangles.) We
didn’t know exactly how we were going to make the drawing of these models fast
enough, though, and went through quite a bit of experimentation and learning in
the process of doing so. For the rest of this chapter 1’11 discuss some interesting
aspects of our triangle-model architecture, and present code for one useful approach
for the rapid drawing of triangle models.

Drawing Triangle Models fast
We would have liked one rendering model, and hence one graphics pipeline, for all
drawing in Quake; this would have simplified the code and tools, and would have
made it much easier to focus our optimization efforts. However, when we tried adding
polygon models to Quake’s global edge table, edge processing slowed down unaccept-
ably. This isn’t that surprising, because the edge table was designed to handle 200 to 300
large polygons, not the 2,000 to 3,000 tiny triangles that a dozen triangle models in
a scene can add. Restructuring the edge list to use trees rather than linked lists would
have helped with the larger data sets, but the basic problem is that the edge table
requires a considerable amount of overhead per edge per scan line, and triangle
models have too few pixels per edge to justify that overhead. Also, the much larger
edge table generated by adding triangle models doesn’t fit well in the CPU cache.
Consequently, we implemented a separate drawing pipeline for triangle models, as
shown in Figure 69.1. Unlike the world pipeline, the triangle-model pipeline is in
most respects a traditional one, with a few exceptions, noted below. The entire world
is drawn first, and then the triangle models are drawn, using z-buffering for proper
visibility. For each triangle model, all vertices are transformed and projected first,
and then each triangle is drawn separately.
Triangle models are stored quite differently from the world itself. Each model con-
sists of front and back skins stretched around a triangle mesh, and contains a full set
of vertex coordinates for each animation frame, so animation is performed by sim-
ply using the correct set of coordinates for the desired frame. No interpolation,
morphing, or other runtime vertex calculations are performed.
Early on, we decided to allow lower drawing quality for triangle models than for the
world, in the interests of speed. For example, the triangles in the models are small,
and usually distant-and generally part of a quickly moving monster that’s trying its
best to do you in-so the quality benefits of perspective texture mapping would add
little value. Consequently, we chose to draw the triangles with affine texture map-
ping, avoiding the work required for perspective. Mind you, the models are
perspective-correct at the vertices; it’s just the pixels between the vertices that suffer
slight warping.

Surface Caching and Quake’s Triangle Models 1263

Quake 5 triangle-model drawing pipeline.
Figure 69.1

1264 Chapter 69

Trading Subpixel Precision for Speed
Another sacrifice at the altar of performance was subpixel precision. Before each
triangle is drawn, we snap its vertices to the nearest integer screen coordinates, rather
than doing the extra calculations to handle fractional vertex coordinates. This causes
some jumping of triangle edges, but again, is not a problem in normal gameplay,
especially for the animation of figures in continuous motion.
One interesting benefit of integer coordinates is that they let us do backface culling
and rejection of degenerate triangles in one operation, because the cross-product z
component used for backface culling returns zero for degenerate triangles. Conve-
niently, that cross-product component is also the denominator for the lighting and
texture gradient calculations used in drawing each triangle, so as soon as we check
the cross-product z value and determine that the triangle is drawable, we immedi-
ately start the FDIV to calculate the reciprocal. By the time we get around to calculating
the gradients, the FDIV has completed execution, effectively taking only the one
cycle required to issue it, because the integer execution pipes can process indepen-
dently while FDIV executes.
Finally, we decided to Gouraud-shade the triangle models, because this makes them
look considerably more 3-D. However, we can’t afford to calculate where all the rel-
evant light sources for each model are in each frame, or even which is the primary
light source. Instead, we select each model’s lighting level based on how brightly the
floor point it was standing on is lit, and use that lighting level for both ambient
lighting (so all parts of the model have some illumination) and Gouraud shading-
but the lighting vector for Gouraud shading is a fixed vector, so the model is always
lit from the same direction. Somewhat surprisingly, in practice this looks consider-
ably better than pure ambient lighting.

An Idea that Didn‘t Work
As we implemented triangle models, we tried several ideas that didn’t work out. One
that’s notable because it seems so appealing is caching a model’s image from one
frame and reusing it in the next frame as a sprite. Our thinking was that clipping,
transforming, projecting, and drawing a several-hundred-triangle model was going
to be a lot more expensive than drawing a sprite, too expensive to allow very many
models to be visible at once. We wanted to be able to display at least a dozen simulta-
neous models, so the idea was that for all but the closest models, we’d draw into a
sprite, then reuse that sprite at the model’s new locations for the next two or three
frames, amortizing the 3-D drawing cost over several frames and boosting overall
model-drawing performance. The rendering wouldn’t be exactly right when the sprite
was reused, because the view of the model would change from frame to frame as the
viewer and model moved, but it didn’t seem likely that that slight inaccuracy would
be noticeable for any but the nearest and largest models.

Surface Caching and Quake’s Triangle Models 1265

As it turns out, though, we were wrong: The repeated frames were sometimes pain-
fully visible, looking like jerky cardboard cutouts. In fact they looked a lot like the
sprites used in DOOM-precisely the effect we were trying to avoid. This was espe-
cially true if we reused them more than once-and if we reused them only once,
then we had to do one full 3-D rendering plus two sprite renderings every two frames,
which wasn’t much faster than simply doing two 3-D renderings.
The sprite architecture also introduced considerable code complexity, increased
memory footprint because of the need to cache the sprites, and made it difficult to
get hidden surfaces exactly right because sprites are unavoidably 2-D. The perfor-
mance of drawing the sprites dropped sharply as models got closer, and that’s also
where the sprites looked worse when they were reused, limiting sprites to use at a
considerable distance. All these problems could have been worked out reasonably
well if necessary, but the sprite architecture just had the feeling of being fundamen-
tally not the right approach, so we tried thinking along different lines.

An Idea that Did Work
John Carmack had the notion that it was just way too much effort per pixel to do all
the work of scanning out the tiny triangles in distant models. After all, distant mod-
els are just indistinct blobs of pixels, suffering heavily from effects such as texture
aliasing and pixel quantization, he reasoned, so it should workjust as well if we could
come up with another way of drawing blobs of approximately equal quality. The trick
was to come up with such an alternative approach. We tossed around half-formed
ideas like flood-filling the model’s image within its silhouette, or encoding the model
as a set of deltas, picking a visible seed point, and working around the visible side of
the model according to the deltas. The first approach that seemed practical enough
to try was drawing the pixel at each vertex replicated to form a 2x2 box, with all the
vertices together forming the approximate shape of the model. Sometimes this worked
quite well, but there were gaps where the triangles were large, and the quality was
very erratic. However, it did point the way to something that in the end did the trick.
One morning I came in to the office to find that overnight (and well into the morn-
ing), John had designed and implemented a technique I’ll call subdivision rusterizution.
This technique scans out approximately the right pixels for each triangle, with al-
most no overhead, as follows. First, all vertices in the model are drawn. Ideally, only
the vertices on the visible side of the model would be drawn, but determining which
vertices those are would take time, and the occasional error from a visible back ver-
tex is lost in the noise.
Once the vertices are drawn, the triangles are processed one at a time. Each triangle
that makes it through backface culling is then drawn with recursive subdivision. If
any of the triangle’s sides is more than one pixel long in either x or y-that is, if the
triangle contains any pixels that aren’t at vertices-then that side is split in half as
nearly as possible at given integer coordinates, and a new vertex is created at the

1266 Chapter 69

split, with texture and screen coordinates that are halfway between those of the ver-
tices at the endpoints. (The same splitting could be done for lighting, but we found
that for small triangles-the sort that subdivision works well on-it was adequate to
flat-shade each triangle at the light level of the first vertex, so we didn’t bother with
Gouraud shading.) The halfway values can be calculated very quickly with shifts.
This vertex is drawn, and then each of the two resulting triangles is then processed
recursively in the same way, as shown in Figure 69.2. There are some additional de-
tails, such as the fill rule that ensures that each pixel is drawn only once (except for
backside vertices, as noted above), but basically subdivision rasterization boils down
to taking a triangle, splitting a side that has at least one undrawn pixel and drawing
the vertex at the split, and repeating the process for each of the two new triangles.
The code to do this, shown in Listing 69.1, is very simple and easily optimized, espe-
cially by comparison with a generalized triangle rasterizer.
Subdivision rasterization introduces considerably more error than affine texture
mapping, and doesn’t draw exactly the right triangle shape, but the difference is
very hard to detect for triangles that contain only a few pixels. We found that the
point at which the difference between the two rasterizers becomes noticeable was
surprisingly close: 30 or 40 feet for the Ogres, and about 12 feet for the Zombies.
This means that most of the triangle models that are visible in a typical Quake scene
are drawn with subdivision rasterization, not affine texture mapping.
How much does subdivision rasterization help performance? When John originally
implemented it, it more than doubled triangle-model drawing speed, because the
affine texture mapper was not yet optimized. However, I took it upon myself to see
how fast I could make the mapper, so now affine texture mapping is only about 20
percent slower than subdivision rasterization. While 20 percent may not sound im-
pressive, it includes clipping, transform, projection, and backface-culling time, so
the rasterization difference alone is more than 50 percent. Besides, 20 percent over-
all means that we can have 12 monsters now where we could only have had 10 before,
so we count subdivision rasterization as a clear success.

LISTING 69.1 169- 1 .C
Quake‘s r e c u r s i v e s u b d i v i s i o n t r i a n g l e r a s t e r i z e r : d r a w s a l l
p i x e l s i n a t r i a n g l e o t h e r t h a n t h e v e r t i c e s b y s p l i t t i n g an
edge t o f o r m a new v e r t e x . d r a w i n g t h e v e r t e x , a n d r e c u r s i v e l y
p rocess ing each o f the two new t r i a n g l e s f o r m e d by u s i n g t h e
new v e r t e x . R e s u l t s a r e l e s s accura te t han f rom a p r e c i s e
a f f i n e o r p e r s p e c t i v e t e x t u r e m a p p e r , and drawing boundar ies
a r e n o t i d e n t i c a l t o t h o s e o f a p rec ise po lygon d rawer , a l though
t h e y a r e c o n s i s t e n t b e t w e e n a d j a c e n t p o l y g o n s d r a w n w i t h t h i s
techn ique .

I nven ted and implemented by John Carmack o f i d S o f t w a r e .

v o i d D-PolysetRecursiveTriangle (i n t * I p l . i n t * l p 2 , i n t * l p 3)
(

i n t *temp:
i n t d;

Surface Caching and Quake’s Triangle Models 1267

Original triangle

(vertices have

already been drawn)

t
Split vertex

id rawn as soon

as it’s identified)

Two new triangles,

each of which is recursively

processed the same way

One recursive subdivision triangle-drawing step.
Figure 69.2

1268 Chapter 69

i n t newC61:
i n t z ;
s h o r t * zbu f ;

I / t r y t o f i n d an edge t h a t ' s more than one p ixe l long i n x or y
d - lp2CO1 - 1p lCOl :
i f (d < -1 I (d > 1)

g o t o s p l i t :
d - lp2C11 - l p l [l l
i f (d < -1) I d > 1

d - lp3CO1 - lp2CO1
i f (d < -1 (1 d > 1

d - 1 ~ 3 1 1 1 - l p2111
i f (d < -1 1 1 d > 1

g o t o s p l i t :

g o t o s p l i t 2 :

a o t o s o l i t 2 :
d - 1piCOl -' lp3CO1:
i f (d < -1 (1 d > 1)

g o t o s p l i t 3 :
d - l p l C l l - lp3C11;
i f (d < -1 1) d > 1)
I

s p l i t 3 :
/ / s h u f f l e p o i n t s s o f i r s t edge i s edge t o s p l i t

temp - l p l :
l p l - l p 3 :
l p 3 - l p 2 :
l p 2 - temp:
g o t o s p l i t :

1

r e t u r n : / / n o p i x e l s l e f t t o fill i n t r i a n g l e

s p l i t 2 :
/ I s h u f f l e p o i n t s so f i r s t edge I s edge t o s p l i t

temp - l p l :
l p l - l p 2 :
1pZ - l p 3 ;
l p 3 - temp:

s p l i t :
/ / s p l i t f i r s t edge screen x. screen y . t e x t u r e s . t e x t u r e t , and z
/ I t o f o r m a new v e r t e x . L i g h t i n g (i n d e x 4) i s i g n o r e d : t h e
/ I d i f f e r e n c e b e t w e e n i n t e r p o l a t i n g l i g h t i n g and u s i n g t h e same
/ / shading f o r t h e e n t i r e t r i a n g l e i s u n n o t i c e a b l e f o r s m a l l
/ / t r i a n g l e s , so we j u s t u s e t h e l i g h t i n g f o r t h e f i r s t v e r t e x o f
/ I t h e o r i g i n a l t r i a n g l e (w h i c h was u s e d d u r i n g s e t - u p t o s e t
/ I d-colormap. used below t o l o o k up lit t e x e l s)

newCOl - (l p l C 0 1 + 1pZCOl) >> 1: / / s p l i t s c r e e n x
newCl l - (1 p l C l l + lpZC11) >> 1: / / s p l i t s c r e e n y
new[,?] - (l p l C 2 1 + lp2 [21) >> 1; / I s p l i t t e x t u r e s
new[Jl - (l p l C 3 1 + lp2 [31) >> 1: / I s p l i t t e x t u r e t
newC51 - (l p 1 [5 1 + l p 2 [5 1) >> 1: / I s p l i t 2

I1 d r a w t h e p o i n t i f s p l i t t i n g a l e a d i n g edge
i f (l p 2 C l l > l p l C 1 1)

i f ((l p2C11 - l p 1 [1]) && (1p2COI < l p lCO1))
goto nodraw;

goto nodraw:

Surface Caching and Quake's Triangle Models 1269

z - newC51>>16:

/ / p o i n t t o t h e p i x e l ’ s z - b u f f e r e n t r y . l o o k i n g up t h e s c a n l i n e s t a r t
/ I address based on screen y and adding i n t h e s c r e e n x c o o r d i n a t e

z b u f - zspantable[new[111 + newCO1;

/ / d r a w t h e s p l i t v e r t e x i f i t ’ s n o t o b s c u r e d b y s o m e t h i n g n e a r e r , as
/ / i n d i c a t e d b y t h e z - b u f f e r

i f (z >- * z b u f)
{

i n t p i x :

11 s e t t h e z - b u f f e r t o t h e new p i x e l ’ s d i s t a n c e
*zbu f - z:

/ / g e t t h e t e x e l f r o m t h e m o d e l ’ s s k i n b i t m a p , a c c o r d i n g t o
/ I t h e s and t t e x t u r e c o o r d i n a t e s , and t r a n s l a t e i t th rough
/ I t h e l i g h t i n g l o o k - u p t a b l e s e t a c c o r d i n g t o t h e f i r s t
/ I v e r t e x f o r t h e o r i g i n a l (t o p - l e v e l) t r i a n g l e . B o t h s and
/ / t a r e i n 16.16 format

p i x = d~pco1ormap[sk in tab1e[new[31>>161Cnew~2]>>1611;

I / d r a w t h e p i x e l , l o o k i n g up t h e s c a n l i n e s t a r t a d d r e s s
/ I based on screen y and a d d i n g i n t h e s c r e e n x c o o r d i n a t e

I
d~viewbuffer[d~scantable~new[lll + new[O]l - p i x :

nodraw:
/ I r e c u r s i v e l y draw the two new t r i a n g l e s we c r e a t e d by adding the
/ / s p l i t v e r t e x

D-PolysetRecursiveTriangle (l p 3 . I p l , new):
D-PolysetRecursiveTriangle (l p 3 , new, l p 2) :

1

More Ideas that Might Work
Useful as subdivision rasterization proved to be, we by no means think that we’ve
maxed out triangle-model drawing, if only because we spent far less design and de-
velopment time on subdivision than on the affine rasterizer, so it’s likely that there’s
quite a bit more performance to be found for drawing small triangles. For example,
it could be faster to precalculate drawing masks or even precompile drawing code
for all possible small triangles (say, up to 4x4 or 5x5), and the memory footprint
looks reasonable. (It’s worth noting that both precalculated drawing and subdivision
rasterization are only possible because we snap to integer coordinates; none of this
stuff works with fixed-point vertices.)
More interesting still is the stack-based rendering described in the article “Time/
Space Tradeoffs for Polygon Mesh Rendering,” by Bar-Yehuda and Gotsman, in the
April, 1996 ACM Transactions on Graphics. Unfortunately, the article is highly abstract
and slow going, but the bottom line is that it’s possible to represent a triangle mesh
as a stream of commands that place vertices in a stack, remove them from the stack,
and draw triangles using the vertices in the stack. This results in excellent CPU cache
coherency, because rather than indirecting all over a vertex pool to retrieve vertex
data, all vertices reside in a tiny stack that’s guaranteed to be in the cache. Local

1 270 Chapter 69

variables used while drawing can be stored in a small block next to the stack, and the
stream of commands representing the model is accessed sequentially from start to
finish, so cache utilization should be very high. As processors speed up at a much
faster rate than main memory access, cache optimizations of this sort will become
steadily more import.ant in improving drawing performance.
As with so many aspects of 3-D, there is no one best approach to drawing triangle
models, and no such thing as the fastest code. In a way, that’s frustrating, but the
truth is, it’s these nearly infinite possibilities that make 3-D so interesting; not only is
it an endless, varied challenge, but there’s almost always a better solution waiting to
be found.

Surface Caching and Quake‘s Triangle Models 1 271

	previous:
	home:
	next:

