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are-Assisted  Surfaces and Fast 
n Without Sprites 

In  the late  OS, I sp summer  doing  contract  programming  at  a government- 
funded installation c theast Solar Energy Center  (NESEC).  Those were 
heady times for solar ith the oil shortages, and  there was lots of money 
being thrown at pla#s  like  NESEC,  which was growing  fast. 

e  street  from MIT, which made for good access to resources. 
meant  that NESEC  was in  a severely parking-impaired part of 
he  student  population  and Boston’s chronic parking shortage. 
did have its own parking lot, but it wasn’t nearly big enough, 

because students  parked  in  it at every opportunity. The lot was posted, and cars peri- 
odically got towed, but King Canute stood a better  chance against the tide than 
NESEC did against the  student hordes, and late arrivals to work often had to park 
blocks away and hike to work, to their considerable displeasure. 
Back then,  I drove an aging Volvo sedan that was sorely  in need of a ring job. It ran fine 
but  burned a quart of oil  every 250 miles, so I  carried  a case of oil in the  trunk,  and 
checked the level frequently. One day,  walking to the  computer  center a couple of 
blocks away, I cut  through  the parking lot and checked the oil in my car. It was low, so 
I  topped it off, left the empty oil can next to the car so I would see it and  remember 
to pick it up to throw out  on my  way back, and  headed toward the  computer center. 

i’ ; 
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I’d  gone only a few hundred  feet when I heard  footsteps and shouting  behind  me, 
and a wild-eyed man in a business suit  came running  up to me, screaming. “It’s bad 
enough you park  in our lot,  but now you’re leaving your garbage lying around!”  he 
yelled. “Don’t you people have  any sense of decency?”  I  told  him I worked at NESEC 
and was going to  pick up the can on my  way back, and  he  shouted, “Don’t give me 
that!”  I  repeated my statements, calmly, and told him who I worked for  and where 
my office was, and  he said, “Don’t give me  that” again,  but with a  little less certainty. 
I kept  adding  detail  until  it was obvious that  I was telling  the truth,  and  he suddenly 
said, “Oh, my God,” turned  red,  and started  to apologize profusely. A few  days later, 
we passed in  the hallway, and  he didn’t look me in the eye. 
The interesting  point is that  there was really no useful outcome  that  could have 
resulted  from his outburst.  Suppose  I  had  been  a student-what  would he have  ac- 
complished by yelling at  me?  He  let his emotions  overrule his common  sense, and as 
a  result,  did  something  he  later wished he  hadn’t. I’ve seen many programmers do 
the same thing, especially  when  they’re  working long  hours and  not  feeling adequately 
appreciated. For example,  some time back I got mail from  a  programmer who com- 
plained bitterly that  although  he was critical to his company’s  success, management 
didn’t  appreciate his hard work and talent, and asked if I could  help  him  find  a 
betterjob. I suggested several ways that  he  might look for anotherjob,  but also  asked 
if he  had tried working his problems out with  his employers; if he really was that 
valuable, what did he have to lose? He  admitted he hadn’t, and recently  he wrote 
back and said that he  had talked to his boss, and now he was getting paid a  lot  more 
money, was getting  credit for his  work, and was just flat-out happy. 
We programmers  think of ourselves  as rational  creatures,  but most of us get angry at 
times, and when we do, like everyone else, we tend  to be driven by our emotions 
instead of our minds. It’s my experience  that  thinking rationally under those cir- 
cumstances can be difficult, but  produces  better  long-term results every  time-so  if 
you find yourself in that situation, stay cool and think your way through  it,  and  odds 
are you’ll be happier down the  road. 
Of course, most of the time programmers really are rational  creatures, and  the  more 
information we have, the  better.  In that spirit, let’s look at  more of the stuff that 
makes  Quake tick, starting with what I’ve recently  learned  about  surface  caching. 

Surface  Caching  with Hardware Assistance 
In  Chapter 68, I discussed in  detail  the  surface  caching  technique  that  Quake uses to 
do detailed, highquality lightingwithout lots  of  polygons.  Since  writing that chapter, I’ve 
gone further, and spent  a considerable amount of  time  working on the  port of Quake  to 
Rendition’s Verite 3-D accelerator  chip. So let  me  start off this chapter by discussing 
what I’ve learned  about using surface  caching  in  conjunction with hardware. 
As you’ll recall, the key to surface  caching is that  lighting  information and polygon 
detail  are  stored separately, with lighting not tied  to polygon vertices, then com- 
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bined  on  demand  into what I call surfaces: lit, textured rectangles that are used  as the 
input to the texture  mapper. Building surfaces takes time, so performance is en- 
hanced by caching  the surfaces from one frame to the next. As I pointed  out in 
Chapter 68, 3-D hardware accelerators are designed to optimize Gouraud  shading, 
but surface caching can also  work on hardware accelerators, with some significant 
quality advantages. 
The surface-caching architecture of the Verite version of Quake (which we call 
VQuake)  is  essentially the same as in the software-only  version of Quake: The CPU 
builds surfaces on  demand, which are  then downloaded to the accelerator’s memory 
and cached there. There  are  a couple of  key differences,  however: the need to download 
surfaces, and  the  requirement  that  the surfaces be in 16-bit-per-pixel (bpp) format. 
Downloading surfaces to the accelerator is a  performance  hit  that doesn’t exist in 
the software-only version. Although Verite  uses DMA to download surfaces, DMA 
does in fact steal performance  from  the CPU. This cost is increased by the require- 
ment for 16-bpp surfaces, because twice  as much  data  must be downloaded. Worse 
still, it takes about twice  as long to build 16-bpp surfaces as 8-bpp surfaces, so the cost 
of  missing the surface cache is  well  over  twice  as expensive in VQuake as in  Quake. 
Fortunately, there’s 4 MB of memory on Verite-based adapters, so the surface cache 
doesn’t miss very often and VQuake runs fine (and looks  very good, thanks to bilinear 
texture filtering, which by itself is pretty much worth the cost of 3-D hardware),  but 
it’s nonetheless  true  that  a completely straightforward port of the surface-caching 
model is not as appealing  for hardware as for software. This is especially true  at high 
resolutions, where the  needs of the surface cache increase due to more detailed 
surfaces but available memory decreases due to frame buffer size. 
Does my recent  experience indicate that as the PC market moves to hardware, there’s 
no choice but to move  to Gouraud  shading, despite the quality issues? Not  at all. 
First  of  all, surface caching does still work  well, just  not as  relatively  well compared to 
Gouraud  shading as is the case in software. Second,  there  are  at least two alternatives 
that preserve the advantages of surface caching without many of the disadvantages 
noted above. 

Letting the Graphics  Card  Build  the  Textures 
One obvious solution is to have the accelerator  card build the textures, rather  than 
having the CPU build and then  download  them. This eliminates downloading com- 
pletely, and lets the accelerator, which should be faster at such things, do  the texel 
manipulation.  Whether this is  actually faster depends  on  whether  the CPU or the 
accelerator is doing  more of the work  overall, but it eliminates download time, which 
is a big help.  This  approach retains the ability  to composite other effects, such as 
splatters and dents, onto surfaces, but by the same token retains the high memory 
requirements  and  dynamic lighting performance impact of the surface cache.  It also 
requires  that the 3-D API and accelerator being used allow drawing into  a  texture, 
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which  is not universally true.  Neither do all APIs or accelerators allow applications 
enough control over the texture heap so that an efficient surface cache can be imple- 
mented, a point  that favors non-caching approaches. (A similar option  that wasn’t 
open to us due to time limitations is downloading 8-bpp surfaces and having the 
accelerator expand them to l6bpp surfaces as it stores them in  texture memory. 
Better yet, some accelerators support 8-bpp palettized hardware textures  that are 
expanded to IGbpp  on  the fly during texturing.) 

The Light Map as Alpha Texture 
Another appealing non-caching approach is doing unlit texture-mapping in one pass, 
then lighting from  the light map as a second pass, using the light map as an  alpha 
texture. In  other words, the textured polygon  is drawn first, with no lighting, then 
the light map is textured on top of the polygon, with the light map intensity used as 
an  alpha value to determine how brightly to light each texel. The hardware’s tex- 
ture-mapping  circuitry is used  for  both  passes, s o  the  lighting  comes  out 
perspective-correct and consistent under all  viewing conditions, just as with the sur- 
face  cache. The lighting polygons don’t even  have to match the texture polygons, so 
they can represent dynamically changing lighting. 
Two-pass lighting not only  looks good,  but has no memory footprint  other  than tex- 
ture  and  light  map  storage,  and  provides level performance,  because it’s not 
dependent  on surface cache hit  rate. The primary downside to two-pass lighting is 
that  it  requires at least twice  as much  performance  from  the accelerator as  single- 
pass drawing. The  current  crop of 3-D accelerators is not particularly fast, and few  of 
them  are  up to the task of doing two  passes at high resolution, although  that will 
change soon. Another potential  problem is that  some accelerators don’t  implement 
true alpha blending. Nonetheless, as accelerators get better, I expect two-pass  draw- 
ing (or three-or-more-pass, for adding splatters and  the like by overlaying sprite 
polygons) to be widely used. I also expect  Gouraud  shading to be widely used; it’s 
easy to  use and fast. Also, speedier CPUs and accelerators will enable much  more 
detailed geometry to be used, and  the smaller that polygons become, the  better 
Gouraud  shading looks compared to surface caching and two-pass lighting. 
The  next graphics engine you’ll see from  id Software will be oriented heavily  toward 
hardware accelerators, and  at this point it’s a tossup whether  the  engine will use 
surface caching,  Gouraud shading, or two-pass lighting. 

Drawing  Triangle  Models 
Most of the last group of chapters  in this book discuss how Quake works.  If  you look 
closely, though, you’ll see that almost all  of the  information is about drawing the 
world-the static walls, floors, ceilings, and such. There  are several reasons for this, 
in  particular that it’s hard to get a world renderer working  well, and that the world is the 
base on which everything else  is drawn. However,  moving entities, such as monsters, 
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are essential to a useful  game engine. Traditionally, these have been  done with sprites, 
but when we set out 1.0 build Quake, we knew that it was time to move on to polygon- 
based models. (In  the case of Quake,  the  models  are  composed of triangles.) We 
didn’t know exactly how we were going to make the drawing of these  models fast 
enough,  though,  and went through  quite a bit of experimentation  and  learning  in 
the process of doing so. For the rest of this chapter 1’11 discuss  some interesting 
aspects of our triangle-model architecture,  and  present  code  for  one useful approach 
for the  rapid drawing of triangle models. 

Drawing  Triangle Models fast 
We would have liked one  rendering  model,  and  hence  one graphics  pipeline,  for all 
drawing in  Quake; this would  have simplified the  code  and tools, and would  have 
made it much  easier to focus our optimization efforts. However, when we tried adding 
polygon models to  Quake’s  global edge table, edge processing slowed  down unaccept- 
ably. This isn’t that surprising, because the  edge table was designed to handle 200 to 300 
large polygons, not  the 2,000 to 3,000 tiny triangles that a  dozen  triangle  models  in 
a  scene  can add. Restructuring the  edge list  to  use trees rather  than linked lists  would 
have helped with the larger  data sets, but  the basic problem is that  the  edge table 
requires  a  considerable amount of overhead per  edge  per scan line,  and  triangle 
models have too few pixels per  edge to justify that  overhead. Also, the  much  larger 
edge table generated by adding triangle  models  doesn’t fit well in the CPU cache. 
Consequently, we implemented  a  separate drawing pipeline  for  triangle  models, as 
shown in Figure 69.1. Unlike the world pipeline,  the  triangle-model  pipeline is in 
most respects a traditional one, with a few exceptions, noted below. The  entire world 
is drawn first, and  then  the triangle  models are drawn, using z-buffering for  proper 
visibility. For each  triangle  model, all vertices are  transformed and projected first, 
and  then each  triangle is drawn separately. 
Triangle models  are  stored  quite differently from the world itself.  Each model  con- 
sists  of front  and back skins stretched  around  a triangle mesh,  and  contains a full set 
of vertex coordinates  for  each  animation  frame, so animation is performed by sim- 
ply using the  correct  set of coordinates  for  the  desired  frame. No interpolation, 
morphing, or other  runtime vertex calculations are  performed. 
Early on, we decided to  allow lower drawing quality for  triangle  models  than  for the 
world, in the interests of speed. For example,  the triangles in the  models are small, 
and usually  distant-and generally part of a quickly  moving monster  that’s trying its 
best to do you in-so the quality benefits of perspective texture  mapping would add 
little value. Consequently, we chose  to draw the triangles with affine texture  map- 
ping,  avoiding  the work required  for  perspective.  Mind  you,  the  models  are 
perspective-correct at the vertices; it’s just  the pixels between the vertices that suffer 
slight warping. 
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Quake 5 triangle-model drawing pipeline. 
Figure 69.1 
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Trading Subpixel  Precision for Speed 
Another sacrifice at the  altar of performance was subpixel  precision. Before each 
triangle is drawn, we snap its vertices to  the  nearest  integer  screen  coordinates,  rather 
than  doing  the  extra calculations to handle  fractional vertex coordinates.  This causes 
some jumping of triangle edges, but again, is not a  problem  in  normal gameplay, 
especially for  the  animation of figures  in  continuous  motion. 
One  interesting benefit of integer  coordinates is that they let us do backface culling 
and rejection of degenerate triangles in one  operation, because  the  cross-product z 
component used  for backface culling returns zero  for degenerate triangles. Conve- 
niently, that  cross-product component is also the  denominator  for  the lighting and 
texture gradient calculations used in drawing each  triangle, so as soon as  we check 
the cross-product z value and  determine  that  the triangle is drawable, we immedi- 
ately start the FDIV to calculate the reciprocal. By the time we get around to calculating 
the  gradients,  the FDIV has  completed  execution, effectively taking only the  one 
cycle required to issue it, because the  integer  execution  pipes  can process indepen- 
dently while FDIV executes. 
Finally, we decided  to  Gouraud-shade the triangle  models,  because this makes them 
look considerably more 3-D. However, we can’t  afford to calculate where all the rel- 
evant  light  sources  for  each  model are in each  frame,  or even  which is the primary 
light  source.  Instead, we select each model’s lighting level based on how brightly the 
floor point  it was standing on is lit, and use that  lighting level for both  ambient 
lighting (so all parts of the model have some  illumination)  and  Gouraud shading- 
but  the  lighting vector for  Gouraud  shading is a fixed vector, so the  model is  always 
lit from  the same direction. Somewhat surprisingly, in  practice this looks consider- 
ably better  than  pure  ambient lighting. 

An  Idea that Didn‘t Work 
As we implemented  triangle  models, we tried several ideas  that  didn’t work out.  One 
that’s notable because it seems so appealing is caching  a model’s image from  one 
frame and reusing  it in the  next  frame as a  sprite. Our thinking was that  clipping, 
transforming,  projecting, and drawing a several-hundred-triangle model was going 
to be a  lot  more expensive than drawing a  sprite, too expensive to allow  very  many 
models to be visible at  once. We wanted to be  able  to display at least a  dozen simulta- 
neous  models, so the  idea was that for all but  the closest models, we’d draw into a 
sprite, then reuse that sprite  at the model’s new locations for  the  next two or  three 
frames,  amortizing  the 3-D drawing cost over several frames and boosting overall 
model-drawing performance. The  rendering wouldn’t be exactly right when the  sprite 
was reused, because the view  of the model would change  from  frame  to  frame as the 
viewer and  model moved, but  it  didn’t seem likely that  that slight inaccuracy would 
be noticeable for any but  the nearest and largest models. 
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As it  turns out,  though, we were wrong: The  repeated frames were sometimes pain- 
fully  visible, looking like jerky  cardboard cutouts. In fact they looked a lot like the 
sprites used in DOOM-precisely the effect we were  trying to avoid. This was espe- 
cially true if  we reused them  more  than once-and if we reused them only once, 
then we had to do  one full 3-D rendering plus two sprite renderings every two frames, 
which  wasn’t much faster than simply doing two 3-D renderings. 
The sprite  architecture also introduced considerable  code complexity, increased 
memory footprint because of the  need to cache  the sprites, and  made it difficult to 
get hidden surfaces exactly right because sprites are unavoidably 2-D. The perfor- 
mance of drawing the sprites dropped sharply as models  got closer, and that’s also 
where the sprites looked worse when they were reused, limiting sprites to use at a 
considerable distance. All these problems could have been worked out reasonably 
well  if necessary, but  the sprite  architecture just  had  the feeling of being fundamen- 
tally not  the  right  approach, so we tried thinking  along  different lines. 

An Idea  that Did Work 
John Carmack had  the  notion  that it was just way too much effort per pixel to do all 
the work  of scanning  out  the tiny triangles in  distant models. After all, distant  mod- 
els are  just indistinct blobs of pixels, suffering heavily from effects such as texture 
aliasing and pixel quantization,  he  reasoned, so it  should  workjust as  well if we could 
come up with another way  of drawing blobs of approximately equal quality. The trick 
was to come up with such an alternative approach. We tossed around half-formed 
ideas like flood-filling the model’s image within its silhouette, or  encoding  the  model 
as a set of deltas, picking a visible seed point, and working around  the visible side of 
the  model  according to the deltas. The first approach  that  seemed practical enough 
to try was drawing the pixel at each vertex replicated to form  a 2x2 box,  with  all the 
vertices together forming the approximate shape of the model. Sometimes  this  worked 
quite well, but  there were gaps where the triangles were large, and  the quality was 
very erratic. However, it did point  the way to something  that in the  end  did  the trick. 
One  morning I  came  in to the office to find that overnight (and well into  the  morn- 
ing),  John  had designed and  implemented  a  technique I’ll  call subdivision rusterizution. 
This  technique scans out approximately the right pixels for each triangle, with  al- 
most no overhead, as  follows.  First,  all vertices in the  model  are drawn. Ideally,  only 
the vertices on  the visible side of the  model would be drawn, but  determining which 
vertices those are would take time, and  the occasional error  from a visible  back  ver- 
tex is  lost in the noise. 
Once  the vertices are drawn, the triangles are processed one at  a time. Each triangle 
that  makes  it through backface culling is then drawn with recursive subdivision. If 
any of the triangle’s sides is more  than  one pixel long in  either x or y-that  is, if the 
triangle contains any  pixels that  aren’t  at vertices-then that side is split in half  as 
nearly as  possible at given integer coordinates, and a new vertex is created  at  the 
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split, with texture and screen coordinates  that are halfway between those of the ver- 
tices at  the endpoints. (The same splitting could be done for lighting, but we found 
that  for small  triangles-the sort  that subdivision works well  on-it  was adequate  to 
flat-shade each triangle at the light level of the first vertex, so we didn’t  bother with 
Gouraud  shading.) The halfway  values can be calculated very quickly  with  shifts. 
This vertex is drawn, and  then each of the two resulting triangles is then processed 
recursively in  the  same way,  as shown in Figure 69.2. There are  some  additional de- 
tails, such as the fill rule  that  ensures  that  each pixel is drawn only once  (except for 
backside vertices, as noted  above), but basically  subdivision rasterization boils  down 
to taking a triangle, splitting a side that has at least one undrawn pixel and drawing 
the vertex at  the split, and repeating the process for  each of the two new triangles. 
The code to do this, shown in Listing 69.1, is  very simple and easily optimized, espe- 
cially  by comparison with a generalized triangle rasterizer. 
Subdivision rasterization introduces considerably more  error  than affine texture 
mapping,  and  doesn’t draw  exactly the  right triangle shape,  but  the difference is 
very hard to detect  for triangles that  contain only a few pixels. We found that the 
point at which the difference between the two rasterizers becomes noticeable was 
surprisingly close: 30 or 40 feet  for  the Ogres, and  about 12 feet  for the Zombies. 
This means  that most  of the triangle models that are visible in  a typical Quake scene 
are drawn  with  subdivision rasterization, not affine texture  mapping. 
How much  does subdivision rasterization help  performance?  When  John originally 
implemented it, it more  than  doubled triangle-model drawing speed, because the 
affine texture mapper was not yet optimized. However, I took it upon myself to see 
how  fast I could  make  the mapper, so now affine texture  mapping is only about 20 
percent slower than subdivision rasterization. While 20 percent may not  sound im- 
pressive, it includes clipping, transform,  projection, and backface-culling time, so 
the rasterization difference alone is more than 50 percent. Besides, 20 percent over- 
all means  that we can have 12 monsters now where we could only  have had 10 before, 
so we count subdivision rasterization as a clear success. 

LISTING 69.1 169- 1 .C 
Quake‘s r e c u r s i v e   s u b d i v i s i o n   t r i a n g l e   r a s t e r i z e r :   d r a w s   a l l  
p i x e l s   i n  a t r i a n g l e   o t h e r   t h a n   t h e   v e r t i c e s   b y   s p l i t t i n g  an 
edge t o   f o r m  a new v e r t e x .   d r a w i n g   t h e   v e r t e x ,   a n d   r e c u r s i v e l y  
p rocess ing   each  o f   the   two new t r i a n g l e s   f o r m e d  by u s i n g   t h e  
new v e r t e x .   R e s u l t s   a r e  l e s s  accura te   t han   f rom a p r e c i s e  
a f f i n e   o r   p e r s p e c t i v e   t e x t u r e   m a p p e r ,  and  drawing  boundar ies 
a r e   n o t   i d e n t i c a l   t o   t h o s e   o f  a p rec ise   po lygon  d rawer ,   a l though 
t h e y   a r e   c o n s i s t e n t   b e t w e e n   a d j a c e n t   p o l y g o n s   d r a w n   w i t h   t h i s  
techn ique .  

I nven ted  and  implemented  by  John Carmack o f   i d   S o f t w a r e .  

v o i d  D-PolysetRecursiveTriangle ( i n t   * I p l .   i n t   * l p 2 ,   i n t   * l p 3 )  
( 

i n t  *temp: 
i n t  d; 
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Original triangle 

(vertices have 

already been drawn) 

t 
Split vertex 

id rawn as soon 

as it’s identified) 

Two new triangles, 

each of which is recursively 

processed the same way 

One recursive subdivision triangle-drawing step. 
Figure 69.2 
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i n t  newC61: 
i n t  z ;  
s h o r t  * zbu f ;  

I /  t r y   t o   f i n d  an  edge t h a t ' s  more   than  one  p ixe l   long  i n  x or  y 
d - lp2CO1 - 1p lCOl :  
i f  ( d  < -1 I (  d > 1) 

g o t o   s p l  i t  : 
d - lp2C11 - l p l [ l l  
i f  ( d  < -1 ) I  d > 1 

d - lp3CO1 - lp2CO1 
i f  ( d  < -1 ( 1  d > 1 

d - 1 ~ 3 1 1 1  - l p2111  
i f  ( d  < -1 1 1  d > 1 

g o t o   s p l  i t  : 

g o t o   s p l i t 2 :  

a o t o   s o l i   t 2 :  
d - 1piCOl -' lp3CO1: 
i f  ( d  < -1 ( 1  d > 1) 

g o t o   s p l i t 3 :  
d - l p l C l l  - lp3C11; 
i f  ( d  < -1 1 )  d > 1) 
I 

s p l  i t 3 :  
/ /  s h u f f l e   p o i n t s  s o  f i r s t  edge i s  edge t o   s p l i t  

temp - l p l :  
l p l  - l p 3 :  
l p 3  - l p 2 :  
l p 2  - temp: 
g o t o   s p l  i t  : 

1 

r e t u r n :  / /  n o   p i x e l s   l e f t   t o  fill i n   t r i a n g l e  

s p l  i t 2 :  
/ I  s h u f f l e   p o i n t s  so f i r s t  edge I s  edge t o   s p l i t  

temp - l p l :  
l p l  - l p 2 :  
1pZ - l p 3 ;  
l p 3  - temp: 

s p l i t :  
/ /  s p l i t   f i r s t  edge  screen  x.   screen y .  t e x t u r e  s .  t e x t u r e  t , and z 
/ I  t o   f o r m  a new v e r t e x .   L i g h t i n g   ( i n d e x  4 )  i s   i g n o r e d :   t h e  
/ I  d i f f e r e n c e   b e t w e e n   i n t e r p o l a t i n g   l i g h t i n g  and u s i n g   t h e  same 
/ /  shading f o r  t h e   e n t i r e   t r i a n g l e   i s   u n n o t i c e a b l e   f o r   s m a l l  
/ /  t r i a n g l e s ,  so we j u s t  u s e   t h e   l i g h t i n g   f o r   t h e   f i r s t   v e r t e x  o f  
/ I  t h e   o r i g i n a l   t r i a n g l e   ( w h i c h  was u s e d   d u r i n g   s e t - u p   t o   s e t  
/ I  d-colormap.  used  below t o   l o o k  up lit t e x e l s )  

newCOl - ( l p l C 0 1  + 1pZCOl) >> 1: / /  s p l i t   s c r e e n  x 
newCl l  - ( 1 p l C l l  + lpZC11) >> 1: / /  s p l i t   s c r e e n  y 
new[,?] - ( l p l C 2 1  + lp2 [21 )  >> 1; / I  s p l i t   t e x t u r e  s 
new[Jl - ( l p l C 3 1  + lp2 [31 )  >> 1: / I  s p l i t   t e x t u r e  t 
newC51 - ( l p 1 [ 5 1  + l p 2 [ 5 1 )  >> 1: / I  s p l i t  2 

I1 d r a w   t h e   p o i n t  i f  s p l i t t i n g  a l e a d i n g  edge 
i f  ( l p 2 C l l  > l p l C 1 1 )  

i f  ( ( l p2C11  - l p 1 [ 1 ] )  && (1p2COI < l p lCO1) )  
goto  nodraw; 

goto  nodraw: 
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z - newC51>>16: 

/ /  p o i n t   t o   t h e   p i x e l ’ s   z - b u f f e r   e n t r y .   l o o k i n g  up t h e   s c a n l i n e   s t a r t  
/ I  address  based on screen y and  adding i n   t h e   s c r e e n  x c o o r d i n a t e  

z b u f  - zspantable[new[111 + newCO1; 

/ /  d r a w   t h e   s p l i t   v e r t e x  i f  i t ’ s   n o t   o b s c u r e d   b y   s o m e t h i n g   n e a r e r ,  as 
/ /  i n d i c a t e d   b y   t h e   z - b u f f e r  

i f  ( z  >- * z b u f )  
{ 

i n t   p i x :  

11 s e t   t h e   z - b u f f e r   t o   t h e  new p i x e l ’ s   d i s t a n c e  
*zbu f  - z:  

/ /  g e t   t h e   t e x e l   f r o m   t h e   m o d e l ’ s   s k i n   b i t m a p ,   a c c o r d i n g   t o  
/ I  t h e  s and t t e x t u r e   c o o r d i n a t e s ,  and t r a n s l a t e  i t  th rough  
/ I  t h e   l i g h t i n g   l o o k - u p   t a b l e   s e t   a c c o r d i n g   t o   t h e   f i r s t  
/ I  v e r t e x   f o r   t h e   o r i g i n a l   ( t o p - l e v e l )   t r i a n g l e .   B o t h  s and 
/ /  t a r e   i n  16.16  format  

p i x  = d~pco1ormap[sk in tab1e[new[31>>161Cnew~2]>>1611;  

I /  d r a w   t h e   p i x e l ,   l o o k i n g  up t h e   s c a n l i n e   s t a r t   a d d r e s s  
/ I  based on screen y and a d d i n g   i n   t h e   s c r e e n  x c o o r d i n a t e  

I 
d~viewbuffer[d~scantable~new[lll + new[O]l - p i x :  

nodraw: 
/ I  r e c u r s i v e l y  draw the   two  new t r i a n g l e s  we c r e a t e d  by  adding  the 
/ /  s p l i t   v e r t e x  

D-PolysetRecursiveTriangle ( l p 3 .  I p l ,  new): 
D-PolysetRecursiveTriangle ( l p 3 ,  new, l p 2 ) :  

1 

More Ideas that Might Work 
Useful  as  subdivision rasterization proved to be, we  by no  means think  that we’ve 
maxed out triangle-model drawing, if only because we spent  far less design and de- 
velopment time on subdivision than  on  the affine rasterizer, so it’s  likely that there’s 
quite  a bit more  performance to be found for drawing small triangles. For example, 
it could be faster to precalculate drawing masks or even precompile drawing code 
for all  possible  small triangles (say, up to 4x4 or 5x5), and  the memory footprint 
looks reasonable. (It’s worth noting  that  both precalculated drawing and subdivision 
rasterization are only  possible because we snap to integer coordinates; none of this 
stuff  works  with fixed-point vertices.) 
More interesting still is the stack-based rendering described in the article “Time/ 
Space Tradeoffs for Polygon  Mesh Rendering,” by Bar-Yehuda and Gotsman, in the 
April, 1996 ACM Transactions  on  Graphics. Unfortunately, the article is highly abstract 
and slow going, but  the  bottom line is that it’s  possible  to represent a triangle mesh 
as a stream of commands  that place vertices in  a stack, remove them  from  the stack, 
and draw triangles using the vertices in the stack. This results in excellent CPU cache 
coherency, because rather  than indirecting all  over a vertex pool to retrieve vertex 
data, all  vertices reside in  a tiny  stack  that’s guaranteed to be in the cache. Local 

1 270 Chapter 69 



variables used while drawing can  be  stored  in  a small block next to the stack, and  the 
stream of commands  representing  the  model is accessed sequentially from  start to 
finish, so cache utilization should be very high. As processors speed up  at a much 
faster  rate  than main memory access, cache  optimizations of this sort will become 
steadily more import.ant in improving drawing performance. 
As with so many aspects of 3-D, there is no  one best approach to drawing triangle 
models, and  no such thing as the fastest code. In a way, that’s frustrating, but  the 
truth is,  it’s these nearly infinite possibilities that make 3-D so interesting; not only is 
it an endless, varied challenge, but there’s almost always a  better  solution waiting to 
be  found. 
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