
chapter 67

sorted spans in action

g Independent Span Sorting for
hout Overdraw

g into the intricacies of hidden surface removal by
ted) spans. At the end of that chapter, I noted that

we were curre d spans in Quake, but it was unclear whether we’d
switch back to e time after that writing, it’s become clear: We’re

’s wonderful story “The Man Who Sold the Moon,” the chief
rocket project tries to figure out how to get a payload of three

e starts out with a four-stage rocket design, but
finds that it won’t dokhe job, so he adds a fifth stage. The fifth stage helps, but not
quite enough, “Because,” he explains, “I’ve had to add in too much dead weight,
that’s why.” (The dead weight is the control and safety equipment that goes with the
fifth stage.) He then tries adding yet another stage, only to find that the sixth stage
actually results in a net slowdown. In the end, he has to give up on the three-person
design and build a one-person spacecraft instead.
l/z-sorted spans in Quake turned out pretty much the same way, as we’ll see in a
moment. First, though, I’d like to note up front that this chapter is very technical
and builds heavily on material I covered earlier in this section of the book; if you
haven’t already read Chapters 59 through 66, you really should. Make no mistake
about it, this is commercial-quality stuff; in fact, the code in this chapter uses the

1225

same sorting technique as the test version of Quake, QTESTl.ZIP, that id Software
placed on the Internet in early March 1996. This material is the Real McCoy, true
reports from the leading edge, and I trust that you’ll be patient if careful rereading
and some occasional catch-up reading of earlier chapters are required to absorb
everything contained herein. Besides, the ultimate reference for any design is work-
ing code, which you’ll find, in part, in Listing 67.1, and in its entirety in the file
DDJZSORT.ZIP on the CD-ROM.

Quake and Sorted Spans
As you’ll recall from Chapter 66, Quake uses sorted spans to get zero overdraw while
rendering the world, thereby both improving overall performance and leveling frame
rates by speeding up scenes that would otherwise experience heavy overdraw. Our
original design used spans sorted by BSP order; because we traverse the world BSP
tree from front-to-back relative to the viewpoint, the order in which BSP nodes are
visited is a guaranteed front-to-back sorting order. We simply gave each node an
increasing BSP sequence number as it was visited, set each polygon’s sort key to the
BSP sequence number of the node (BSP splitting plane) it lay on, and used those
sort keys when generating spans.
(In a change from earlier designs, polygons now are stored on nodes, rather than
leaves, which are the convex subspaces carved out by the BSP tree. Visits to poten-
tially visible leaves are used only to mark that the polygons that touch those leaves
are visible and need to be drawn, and each marked-visible polygon is then drawn
after everything in front of its node has been drawn. This results in less BSP splitting
of polygons, which is A Good Thing, as explained below.)
This worked flawlessly for the world, but had a couple of downsides. First, it didn’t
address the issue of sorting small, moving BSP models such as doors; those models
could be clipped into the world BSP tree’s leaves and assigned sort keys correspond-
ing to the leaves into which they fell, but there was still the question of how to sort
multiple BSP models in the same world leaf against each other. Second, strict BSP
order requires that polygons be split so that every polygon falls entirely within a
single leaf. This can be stretched by putting polygons on nodes, allowing for larger
polygons on average, but even then, polygons still need to be split so that every
polygon falls within the bounding volume for the node on which it lies. The end result,
in either case, is more and smaller polygons than if BSP order weren’t used-and that, in
turn, means lower performance, because more polygons must be clipped, trans-
formed, and projected, more sorting must be done, and more spans must be drawn.
We figured that if only we could avoid those BSP splits, Quake would get a lot faster.
Accordingly, we switched from sorting on BSP order to sorting on l / z , and left our
polygons unsplit. Things did get faster at first, but not as much as we had expected,
for two reasons.

1226 Chapter 67

First, as the world BSP tree is descended, we clip each node’s bounding box in turn
to see if it’s inside or outside each plane of the view frustum. The clipping results can
be remembered, and often allow the avoidance of some or all clipping for the node’s
polygons. For example, all polygons in a node that has a trivially accepted bounding
box are likewise guaranteed to be unclipped and in the frustum, since they all lie
within the node’s volume and need no further clipping. This efficient clipping mecha-
nism vanished as soon as we stepped out of BSP order, because a polygon was no
longer necessarily confined to its node’s volume.
Second, sorting on l / z isn’t as cheap as sorting on BSP order, because floating-point
calculations and comparisons are involved, rather than integer compares. So Quake
got faster but, like Heinlein’s fifth rocket stage, there was clear evidence of diminish-
ing returns.
That wasn’t the bad part; after all, even a small speed increase is A Good Thing. The
real problem was that our initial l / z sorting proved to be unreliable. We first ran
into problems when two forward-facing polygons started at a common edge, because
it was hard to tell which one was really in front (as discussed below), and we had to
do additional floating-point calculations to resolve these cases. This fixed the prob-
lems for a while, but then odd cases started popping up where just the right
combination of polygon alignments caused new sorting errors. We tinkered with
those too, adding more code and incurring additional slowdowns in the process.
Finally, we had everything working smoothly again, although by this point Quake
was back to pretty much the same speed it had been with BSP sorting.
And then yet another crop of sorting errors popped up.
We could have fixed those errors too; we’ll take a quick look at how to deal with such
cases shortly. However, like the sixth rocket stage, the fixes would have made Quake
slower than it had been with BSP sorting. S o we gave up and went back to BSP order,
and now the code is simpler and sorting works reliably. It’s too bad our experiment
didn’t work out, but it wasn’t wasted time because in trying what we did we learned
quite a bit. In particular, we learned that the information provided by a simple, reli-
able world ordering mechanism, such as a BSP tree, can do more good than is
immediately apparent, in terms of both performance and solid code,
Nonetheless, sorting on l / z can be a valuable tool, used in the right context; drawing a
Quake world just doesn’t happen to be such a case. In fact, sorting on l / z is how we’re
now handling the sorting of multiple BSP models that lie within the same world leaf
in Quake. In this case, we don’t have the option of using BSP order (because we’re
drawing multiple independent trees), so we’ve set restrictions on the BSP models to
avoid running into the types of l / z sorting errors we encountered drawing the Quake
world. Next, we’ll look at another application in which sorting on l / z is quite useful,
one where objects move freely through space. As is so often the case in 3-D, there is
no one “right” technique, but rather a great many different techniques, each one
handy in the right situations. Often, a combination of techniques is beneficial; for

Sorted Spans in Action 1227

example, the combination in Quake of BSP sorting for the world and l / z sorting for
BSP models in the same world leaf.
For the remainder of this chapter, I'm going to look at the three main types of l / z
span sorting, then discuss a sample 3-D app built around l / z span sorting.

Types of 1 /z Span Sorting
As a quick refresher: With l / z span sorting, all the polygons in a scene are treated as
sets of screenspace pixel spans, and l / z (where z is distance from the viewpoint in
viewspace, as measured along the viewplane normal) is used to sort the spans so that
the nearest span overlapping each pixel is drawn. As I discussed in Chapter 66, in the
sample program we're actually going to do all our sorting with polygon edges, which
represent spans in an implicit form.
There are three types of l / z span sorting, each requiring a different implementa-
tion. In order of increasing speed and decreasing complexity, they are: intersecting,
abutting, and independent. (These are names of my own devising; I haven't come
across any standard nomenclature in the literature.)

Intersecting Span Sorting
Intersecting span sorting occurs when polygons can interpenetrate. Thus, two spans
may cross such that part of each span is visible, in which case the spans have to be
split and drawn appropriately, as shown in Figure 6'7.1.

invisible portion
of polygon B

invisible portion
of polygon A
l..--* -" ".

-I -. "."" ...I ". -. ""
"" *.--

visible of polygon portion h A visible portion
span split point of polygon B

viewpoint

Note: Polygons A and B are viewed from above.

Intersecting span sorting.
Figure 67.1

1228 Chapter 67

Intersecting is the slowest and most complicated type of span sorting, because it is
necessary to compare l / z values at two points in order to detect interpenetration,
and additional work must be done to split the spans as necessary. Thus, although
intersecting span sorting certainly works, it’s not the first choice for performance.

Abutting Span Sorting
Abutting span sorting occurs when polygons that are not part of a continuous surface
can butt up against one another, but don’t interpenetrate, as shown in Figure 67.2. This
is the sorting used in Quake, where objects like doors often abut walls and floors, and
turns out to be more complicated than you might think. The problem is that when
an abutting polygon starts on a given scan line, as with polygon B in Figure 67.2, it
starts at exactly the same l / z value as the polygon it abuts, in this case, polygon A, so
additional sorting is needed when these ties happen. Of course, the two-point sort-
ing used for intersecting polygons would work, but we’d like to find something faster.
As it turns out, the additional sorting for abutting polygons is actually quite simple;
whichever polygon has a greater l / z gradient with respect to screen x (that is, which-
ever polygon is heading fastest toward the viewer along the scan line) is the front
one. The hard part is identifylng when ties-that is, abutting polygons-occur; due
to floating-point imprecision, as well as fixed-point edge-stepping imprecision that
can move an edge slightly on the screen, calculations of l / z from the combination
of screen coordinates and l / z gradients (as discussed last time) can be slightly off, so

invisible portion
of polygon A

visible portion I visible portion
of polygon A Polygone B starts here, of polygon B

abutting polygon A.
At this location, both polygons
have the same 1 /z value.

‘0’
viewpoint

Note: Polygons A and B are viewed from above.

Abutting span sorting.
Figure 67.2

Sorted Spans in Action 1 229

most tie cases will show up as near matches, not exact matches. This imprecision
makes it necessary to perform two comparisons, one with an adjust-up by a small
epsilon and one with an adjust-down, creating a range in which near-matches are
considered matches. Fine-tuning this epsilon to catch all ties, without falsely report-
ing close-but-not-abutting edges as ties, proved to be troublesome in Quake, and the
epsilon calculations and extra comparisons slowed things down.
I do think that abutting l / z span sorting could have been made reliable enough for
production use in Quake, were it not that we share edges between adjacent polygons
in Quake, so that the world is a large polygon mesh. When a polygon ends and is
followed by an adjacent polygon that shares the edge that just ended, we simply
assume that the adjacent polygon sorts relative to other active polygons in the same
place as the one that ended (because the mesh is continuous and there’s no inter-
penetration), rather than doing a l / z sort from scratch. This speeds things up by
saving a lot of sorting, but it means that if there is a sorting error, a whole string of
adjacent polygons can be sorted incorrectly, pulled in by the one missorted polygon.
Missorting is a very real hazard when a polygon is very nearly perpendicular to the
screen, so that the l / z calculations push the limits of numeric precision, especially
in single-precision floating point.
Many caching schemes are possible with abutting span sorting, because any given
pair of polygons, being noninterpenetrating, will sort in the same order throughout
a scene. However, in Quake at least, the benefits of caching sort results were out-
weighed by the additional overhead of maintaining the caching information, and
every caching variant we tried actually slowed Quake down.

Independent Span Sorting
Finally, we come to independent span sorting, the simplest and fastest of the three,
and the type the sample code in Listing 67.1 uses. Here, polygons never intersect
or touch any other polygons except adjacent polygons with which they form a con-
tinuous mesh. This means that when a polygon starts on a scan line, a single l / z
comparison between that polygon and the polygons it overlaps on the screen is
guaranteed to produce correct sorting, with no extra calculations or tricky cases to
worry about.
Independent span sorting is ideal for scenes with lots of moving objects that never
actually touch each other, such as a space battle. Next, we’ll look at an implementa-
tion of independent l / z span sorting.

1 / z Span Sorting in Action
Listing 67.1 is a portion of a program that demonstrates independent l / z span sort-
ing. This program is based on the sample 3-D clipping program from Chapter 65;
however, the earlier program did hidden surface removal (HSR) by simply z-sorting

1230 Chapter 67

whole objects and drawing them back-to-front, while Listing 67.1 draws all polygons
by way of a l/z-sorted edge list. Consequently, where the earlier program worked
only so long as object centers correctly described sorting order, Listing 67.1 works
properly for all combinations of non-intersecting and non-abutting polygons. In
particular, Listing 67.1 correctly handles concave polyhedra; a new L-shaped object
(the data for which is not included in Listing 67.1) has been added to the sample
program to illustrate this capability. The ability to handle complex shapes makes
Listing 67.1 vastly more useful for real-world applications than the 3-D clipping demo
from Chapter 65.

LISTING 67.1 167-1 .C
/ / P a r t o f Win32 program t o d e m o n s t r a t e z - s o r t e d s p a n s . W h i t e s p a c e
/ / removed f o r s p a c e r e a s o n s . F u l l s o u r c e c o d e , w i t h w h i t e s p a c e ,
/ / a v a i l a b l e f r o m ftp.idsoftware.com/mikeab/ddjzsort.zip.

Wdef i ne MAX-SPANS 10000
C d e f i ne MAXLSURFS 1000
d e f i n e MAXKEDGES 5000

t y p e d e f s t r u c t s u r f - s {
s t r u c t s u r f - s * p n e x t . * p p r e v :
i n t c o l o r , v i s x s t a r t , s t a t e :
d o u b l e z i n v 0 0 . z i n v s t e p x . z i n v s t e p y :

1 s u r f - t :

t y p e d e f s t r u c t edge-s t
i n t
s u r f - t

x . x s t e p . l e a d i n g :
* p s u r f :

s t r u c t edge-s *pnex t . *pp rev . *pnex t remove :
I edge-t :

/ / Span. edge, and sur face l i s t s
span-t spans[MAX_SPANSl:
edge-t edgesCMAX-EDGES]:
s u r f - t surfsCMAXLSURFS1:

/ I Bucke t l i s t o f new edges t o add on each scan l i n e
edge-t newedgesrMAX-SCREEN-HEIGHT]:

/ / B u c k e t l i s t o f edges t o remove on each scan l i n e
edge- t *removeedges[MAX_SCREEN~HEIGHTl;

/ / Head and tail f o r t h e a c t i v e e d g e l i s t
edge- t edgehead . edge ta i l :

/ I Edge used as s e n t i n e l o f new edge l i s t s
edge-t maxedge = tOx7FFFFFFFl:

/ / Head/tail/sentinel/background s u r f a c e o f a c t i v e s u r f a c e s t a c k
s u r f - t s u r f s t a c k :

/ / p o i n t e r s t o n e x t a v a i l a b l e s u r f a c e a n d e d g e
s u r f - t * p a v a i l s u r f :
edge- t *pavai 1 edge:

Sorted Spans in Action 1231

I1 Returns true if polygon faces the viewpoint, assuming a clockwise
/ / winding of vertices as seen from the front.
int PolyFacesViewer(po1ygon-t *ppoly. plane-t *pplane)
I

int i;
point-t viewvec;

for (i-0 ; i < 3 : i++)

11 Use an epsilon here s o we don't get polygons tilted s o
/ / sharply that the gradients are unusable or invalid
if (OotProduct (&viewvec. &pplane->normal) < -0.01)

return 0;

viewvec.v[il - ppoly->verts[Ol.v[il - currentpos.v[i];

return 1:

1

/ / Add the polygon's edges to the global edge table.
void AddPolygonEdges (plane-t *plane. polygon2D-t *screenpoly)
I

double distinv, deltax, deltay. slope:
int i , nextvert, numverts. temp, topy. bottomy, height;
edge-t *pedge;

numverts - screenpoly->numverts;
/ / Clamp the polygon's vertices just in case some very near
I1 points have wandered out o f range due to floating-point
/ / imprecision
for (i-0 ; i<numverts ; i++) {

if (screenpoly->verts[il.x < -0.5)
screenpoly->verts[i].x - -0.5;

if (screenpoly->verts[i].x > ((doub1e)OIBWidth - 0 . 5))
screenpoly->verts[i].x - (doub1e)DIBWidth - 0 . 5 ;

if (screenpoly->verts[il.y < - 0 . 5)
screenpoly->verts[il.y - - 0 . 5 ;

if (screenpoly->verts[il.y > ((doub1e)DIBHeight - 0 . 5))
screenpoly->verts[i].y - (doub1e)OIBHeight - 0.5;

I

I / Add each edge in turn
for (i-0 : i<numverts ; i++) {

nextvert - i + 1;
if (nextvert >- numverts)

nextvert - 0;
topy - (int)ceil(screenpoly->verts[il.y);
bottomy - (int)ceil(screenpoly->verts[nextvertl.y):
height - bottomy - topy:
if (height -- 0)

if (height < 0) {
continue; / / doesn't cross any scan lines

/ / Leading edge
temp - topy;
topy - bottomy;
bottomy - temp;
pavailedge->leading - 1;
deltax - screenpoly->verts[il.x -

deltay - screenpoly->verts[i].y -

slope - deltax / deltay:

screenpoly->verts[nextvert].x:

screenpoly->verts[nextvertl.y:

1232 Chapter 67

/ / Edge coordinates are in 16.16 fixed point
pavailedge->xstep - (int)(slope * (float)Ox10000):
pavailedge->x - (int)((screenpoly->verts[nextvert].x +

slope) * (f1oat)OxlOOOO):
((floatltopy - s c r e e n p o l y - > v e r t s [n e x t v e r t] . y) *

I else I
/ / Trailing edge
pavailedge->leading - 0:
deltax - screenpoly->verts[nextvert].x -

screenpoly->verts[i].x;
deltay - screenpoly->verts[nextvertl.y -

screenpoly->verts[i].y:
slope - deltax f deltay;
/ / Edge coordinates are in 16.16 fixed point
pavailedge->xstep - (int)(slope * (f1oat)OxlOOOO):
pavailedge->x - (int)((screenpoly->verts[il.x +

((floatltopy - screenpoly->verts[i].y) * slope) *
(f1oat)OxlOOOO):

I

I / Put the edge on the list to be added on top scan
pedge - &newedges[topyl:
while (pedge->pnext->x < pavailedge->x)

pavailedge->pnext - pedge->pnext:
pedge->pnext - pavailedge:
/ I Put the edge on the list to be removed after final scan
pavailedge->pnextremove - removeedgesCbottomy - 11;
removeedges[bottomy - 13 - pavailedge:
/ I Associate the edge with the surface we'll create for
/ I this polygon
pavailedge->psurf - pavailsurf:
I / Make sure we don't overflow the edge array
if (pavailedge < &edges[MAX-EDGES])

pedge - pedge->pnext;

1

/ / Create the surface, so we'll know how to sort and draw from
I / the edges
pavailsurf->state - 0:
Davai 1 surf ->col or - currentcol or:

pavai 1 edge++:

/ / Set up the l/z gradients from the polygon, calculating the
I1 base value at screen coordinate 0.0 s o we can use screen
I / coordinates directly when calculating l l z from the gradients
distinv - 1.0 / plane->distance:
pavailsurf->zinvstepx - plane->normal.v[O] * distinv *

maxscreenscaleinv * (fieldofview / 2 .0) :
pavailsurf->zinvstepy - -plane->normal.vClI * distinv *

maxscreenscaleinv * (fieldofview / 2.0):
pavailsurf->zinv00 - plane->normal.v[Z] * distinv -

xcenter * pavailsurf->zinvstepx -
ycenter * pavailsurf->zinvstepy:

/ / Make sure we don't overflow the surface array
if (pavailsurf < &surfs[MAX-SURFS])

pavailsurfce:
1

Sorted Spans in Action 1233

/ / Scan all the edges in the global edge table into spans.
void ScanEdges (void)
{

int x. y ;
double fx. fy, zinv, zinv2;
edge-t *pedge. *pedge2. *ptemp;
span-t *pspan;
surf-t *psurf, *psurf2;

pspan - spans;
/ / Set up the active edge list as initially empty, containing
/ / only the sentinels (which are also the background fill). Most
/ / of these fields could be set up just once at start-up
edgehead.pnext - &edgetail:
edgehead.pprev - NULL;
edgehead.x - -0xFFFF; / / left edge of screen
edgehead.leading - 1;
edgehead.psurf - &surfstack:
edgetail.pnext - NULL; / / mark edge of list
edgetail.pprev - &edgehead;
edgetai1.x - DIBWidth << 16; / I right edge of screen
edgetai1.leading - 0;
edgetail.psurf - &surfstack;
/ / The background surface is the entire stack initially, and
/ / is infinitely far away, s o everything sorts in front of it.
/ / This could be set just once at start-up
surfstack.pnext - surfstack.pprev - &surfstack;
surfstack.color - 0;
surfstack.zinv00 - -999999.0;
surfstack.zinvstepx - surfstack.zinvstepy - 0.0:
for (y-0 ; y<OIBHeight : y++) {

fy - (doub1e)y;
/ / Sort in any edges that start on this scan
pedge - newedges[yl.pnext:
pedge2 - &edgehead;
while (pedge !- &maxedge) (

while (pedge->x > pedge2->pnext->x)

ptemp - pedge->pnext;
pedge->pnext - pedge2->pnext;
pedge->pprev - pedge2;
pedge2->pnext->pprev - pedge;
pedgeZ->pnext - pedge:
pedge2 - pedge:
pedge - ptemp;

pedge2 - pedgeZ->pnext;

1

/ / Scan out the active edges into spans
/ / Start out with the left background edge already inserted,
/ / and the surface stack containing only the background
surfstack.state - 1;
surfstack.visxstart - 0;
for (pedge-edgehead.pnext ; pedge : pedge-pedge->pnext) I

psurf - pedge->psurf;
if (pedge->leading) (

/ / It's a leading edge. Figure out where it is
/ / relative to the current surfaces and insert in
/ / the surface stack; if it's on top, emit the span
/ / for the current top.

1234 Chapter 67

/ I F i r s t , make s u r e t h e e d g e s d o n ' t c r o s s
i f (t t p s u r f - > s t a t e - 1) (

f x - (doub1e)pedge->x * (1 .0 / (doub le)Ox10000) :
/ I C a l c u l a t e t h e s u r f a c e ' s l l z v a l u e a t t h i s p i x e l
z i n v - p s u r f - > z i n v 0 0 + p s u r f - > z i n v s t e p x * f x +

I / See i f t h a t makes i t a new t o p s u r f a c e
p s u r f 2 - s u r f s t a c k . p n e x t ;
z i n v 2 - p s u r f 2 - > z i n v 0 0 + p s u r f 2 - > z i n v s t e p x * f x +

i f (z i n v >- z i n v 2) {

p s u r f - > z i n v s t e p y * f y ;

p s u r f Z - > z i n v s t e p y * f y :

/ I I t ' s a new t o p s u r f a c e
/ I e m i t t h e s p a n f o r t h e c u r r e n t t o p
x - (pedge->x + OxFFFF) >> 16:
pspan->coun t - x - p s u r f 2 - > v i s x s t a r t :
i f (pspan->coun t > 0) (

pspan->y - y :
pspan->x - p s u r f 2 - > v i s x s t a r t ;
p s p a n - > c o l o r - p s u r f 2 - > c o l o r :
/ I Make s u r e we d o n ' t o v e r f l o w
I / t h e s p a n a r r a y
i f (pspan < &spansCMAX-SPANS])

pspan++:
1
p s u r f - > v i s x s t a r t - x :
/ I Add t h e e d g e t o t h e s t a c k
p s u r f - > p n e x t - p s u r f 2 :
p s u r f 2 - > p p r e v - p s u r f :
s u r f s t a c k . p n e x t - p s u r f :
p s u r f - > p p r e v - & s u r f s t a c k ;

/ I Not a new t o p : s o r t i n t o t h e s u r f a c e s t a c k .
/ I Guaranteed t o t e r m i n a t e d u e t o s e n t i n e l
/ I b a c k g r o u n d s u r f a c e
do {

1 e l s e {

p s u r f 2 - p s u r f 2 - > p n e x t :
z i n v 2 - p s u r f Z - > z i n v 0 0 +

p s u r f 2 - > z i n v s t e p x * f x +
p s u r f 2 - > z i n v s t e p y * f y ;

1 w h i l e (z i n v < z i n v 2) :
/ I I n s e r t t h e s u r f a c e i n t o t h e s t a c k
p s u r f - > p n e x t - p s u r f 2 :
p s u r f - > p p r e v - p s u r f Z - > p p r e v :
p s u r f 2 - > p p r e v - > p n e x t - p s u r f :
p s u r f 2 - > p p r e v - p s u r f :

1
1

1 e l s e {
I / I t ' s a t r a i l i n g e d g e : i f t h i s was t h e t o p s u r f a c e .
I / emi t t he span and remove it.
I / F i r s t , make s u r e t h e e d g e s d i d n ' t c r o s s
i f (- p s u r f - > s t a t e - 0) {

i f (s u r f s t a c k . p n e x t - p s u r f) {
/ I I t ' s on t o p , e m i t t h e s p a n
x - ((pedge->x + OxFFFF) >> 16) :
pspan->coun t - x - p s u r f - > v i s x s t a r t :
i f (pspan->coun t > 0) {

pspan->y - y:
pspan->x - p s u r f - > v i s x s t a r t :
p s p a n - > c o l o r - p s u r f - > c o l o r :

Sorted Spans in Action 1 235

/ / Make s u r e we d o n ' t o v e r f l o w
/ / t h e s p a n a r r a y
i f (pspan < &spans[MAX-SPANSl)

p s p a n t c ;
I

1
p s u r f - > p n e x t - > v i s x s t a r t - x;

/ / Remove t h e s u r f a c e f r o m t h e s t a c k
p s u r f - > p n e x t - > p p r e v - p s u r f - > p p r e v ;
p s u r f - > p p r e v - > p n e x t - p s u r f - > p n e x t ;

}

/ / Remove e d g e s t h a t a r e d o n e
pedge - removeedgesCy1;
w h i l e (p e d g e) {

p e d g e - > p p r e v - > p n e x t - pedge->pnex t ;
p e d g e - > p n e x t - > p p r e v - pedge->pprev ;
pedge - pedge->pnextremove:

1

/ / S t e p t h e r e m a i n i n g e d g e s o n e s c a n l i n e . a n d r e - s o r t
f o r (p e d g e - e d g e h e a d . p n e x t ; pedge !- & e d g e t a i l ; 1 {

ptemp - p e d g e - > p n e x t ;
/ / S t e p t h e e d g e
pedge->x +- p e d g e - > x s t e p ;
/ / Move t h e e d g e b a c k t o t h e p r o p e r s o r t e d l o c a t i o n .
/ / i f n e c e s s a r y
w h i l e (p e d g e - > x < p e d g e - > p p r e v - > x) I

pedge2 - pedge->pprev ;
pedge2->pnex t - pedge->pnex t :
p e d g e - > p n e x t - > p p r e v - pedge2:
p e d g e 2 - > p p r e v - > p n e x t - pedge;
pedge->pprev - pedgeZ->pprev :
p e d g e - > p n e x t - pedge2;
pedge2->pprev - pedge:

1
pedge - ptemp;

I
1
pspan->x - -1: / / m a r k t h e e n d o f t h e l i s t

/ / D r a w a l l t h e s p a n s t h a t w e r e s c a n n e d o u t .
v o i d DrawSpans (v o i d)
I

span-t *pspan;
f o r (pspan-spans ; pspan->x !- -1 ; pspan++)

memset (pDIB + (D I B P i t c h * p s p a n - > y) + p s p a n - > x .
p s p a n - > c o l o r ,
p s p a n - > c o u n t) :

1

/ / C l e a r t h e l i s t s o f e d g e s t o a d d a n d r e m o v e on e a c h s c a n l i n e .
v o i d C l e a r E d g e L i s t s (v o i d 1
(

i n t i:

1236 Chapter 67

f o r (i=O ; i < D I B H e i g h t ; i++) {

n e w e d g e s [i l . p n e x t = &maxedge;
removeedges [i] = NULL;

}
1

/ / R e n d e r t h e c u r r e n t s t a t e o f t h e w o r l d
v o i d U p d a t e W o r l d O
{

HPALETTE h o l d o a l :

t o t h e s c r e e n .

HDC
HBITMAP
polygon2D-t
po l ygon- t
c o n v e x o b j e c t - t
i n t
p l a n e - t
p o i n t L t

hdcScreen. hdcDIBSect ion ;
h o l d b i t m a p :
s c r e e n p o l y ;
* p p o l y . t p o l y 0 . t p o l y l . t p o l y 2 ;
* p o b j e c t ;
i. j . k ;
p l a n e ;
t n o r m a l :

U p d a t e v i e w P o s o ;
S e t U p F r u s t u m O :
C l e a r E d g e L i s t s O ;
p a v a i l s u r f = s u r f s :
p a v a i l e d g e = edges;

I / Draw a l l v i s i b l e f a c e s i n a l l o b j e c t s
p o b j e c t = o b j e c t h e a d . p n e x t ;
w h i l e (p o b j e c t != & o b j e c t h e a d) [

p p o l y = p o b j e c t - > p p o l y ;
f o r (i=O : i < p o b j e c t - > n u m p o l y s : i++) {

I / Move t h e p o l y g o n r e l a t i v e t o t h e o b j e c t c e n t e r
tpo ly0.numver t .s = p p o l y [i l . n u m v e r t s ;
f o r (j = O ; j < t p o l y O . n u m v e r t s ; j++) {

f o r (k=O ; k<3 ; k++)
t p o l y O . v e r t s [j l . v [k l = p p o l y [i l . v e r t s [j l . v [k l +

p o b j e c t - > c e n t e r . v [k l ;
I
i f (P o l y F a c e s V i e w e r (& t p o l y O . & p p o l y [i l . p l a n e)) {

i f (C l i p T o F r u s t u m (& t p o l y O . & t p o l y l)) t
c u r r e n t c o l o r = p p o l y [i l . c o l o r ;
T r a n s f o r m P o l y g o n (& t p o l y l . & t p o l y 2) ;
P r o j e c t P o l y g o n (& t p o l y 2 . & s c r e e n p o l y) :

/ I Move t h e p o l y g o n ' s p l a n e i n t o v i e w s p a c e
/ / F i r s t move i t i n t o w o r l d s p a c e (o b j e c t r e l a t i v e)
t n o r m a l = p p o l y [i l . p l a n e . n o r m a l ;
p l a n e . d i s t a n c e = p p o l y [i] . p l a n e . d i s t a n c e +

D o t P r o d u c t (& p o b j e c t - > c e n t e r . & t n o r m a l) ;

/ / Now t r a n s f o r m i t i n t o v i e w s p a c e
/ I D e t e r m i n e t h e d i s t a n c e f r o m t h e v i e w p o n t
p l a n e . d i s t a n c e -=

D o t P r o d u c t (& c u r r e n t p o s . & t n o r m a l

I / R o t a t e t h e n o r m a l i n t o v i e w o r i e n t a t
p lane.norma1 .v [O] =

D o t p r o d u c t (& t n o r m a l . & v r i g h t) :
p l a n e . n o r m a 1 . v [l l =

D o t p r o d u c t (& t n o r m a l . & v u p) ;

1 ;

i o n

Sorted Spans in Action 1237

p lane.norma1 .v [21 -
AddPo lygonEdges (&p lane , &sc reenpo ly) :

D o t P r o d u c t (& t n o r r n a l . & v p n) :

1
1

1
p o b j e c t = p o b j e c t - > p n e x t ;

1
ScanEdges 0 ;
DrawSpans 0 ;

/ / We’ve drawn the f rame; copy i t t o t h e s c r e e n
hdcScreen - GetDC(hwndOutput1:
h o l d p a l - SelectPalette(hdcScreen. hpalDIB. FALSE);
RealizePalette(hdcScreen):
hdcDIBSec t ion - CreateCompatibleDC(hdcScreen):
h o l d b i t m a p - SelectObject(hdcD1BSection. h D I B S e c t i o n) ;
B i t B l t (h d c S c r e e n , 0 . 0 , D IBWid th . D IBHe igh t . hdcDIBSec t ion .

S e l e c t P a l e t t e (h d c S c r e e n , h o l d p a l , FALSE) ;
ReleaseDC(hwndDutput , hdcscreen) ;
SelectObject(hdcD1BSection. h o l d b i t m a p) :
D e l e t e D C (h d c D 1 B S e c t i o n) ;

0. 0. S R C C O P Y) :

By the same token, Listing 67.1 is quite a bit more complicated than the earlier code.
The earlier code’s HSR consisted of a z-sort of objects, followed by the drawing of the
objects in back-to-front order, one polygon at a time. Apart from the simple object
sorter, all that was needed was backface culling and a polygon rasterizer.
Listing 6’7.1 replaces this simple pipeline with a three-stage HSR process. After
backface culling, the edges of each of the polygons in the scene are added to the
global edge list, by way of AddPolygonEdges(). After all edges have been added, the
edges are turned into spans by ScanEdgesO, with each pixel on the screen being
covered by one and only one span (that is, there’s no overdraw). Once all the spans
have been generated, they’re drawn by Drawspans(), and rasterization is complete.
There’s nothing tricky aboutAddPolygonEdges(), and Drawspans(), as implemented
in Listing 6’1.1, is very straightforward as well. In an implementation that supported
texture mapping, however, all the spans wouldn’t be put on one global span list and
drawn at once, as is done in Listing 67.1, because that would result in drawing spans
from all the surfaces in no particular order. (A surface is a drawing object that’s
originally described by a polygon, but in ScanEdgesO there is no polygon in the
classic sense of a set of vertices bounding an area, but rather just a set of edges and a
surface that describes how to draw the spans outlined by those edges.) That would
mean constantly skipping from one texture to another, which in turn would hurt
processor cache coherency a great deal, and would also incur considerable overhead
in setting up gradient and perspective calculations each time a surface was drawn. In
Quake, we have a linked list of spans hanging off each surface, and draw all the spans
for one surface before moving on to the next surface.

1238 Chapter 67

The core of Listing 67.1, and the most complex aspect of l/z-sorted spans, is
ScanEdgesO, where the global edge list is converted into a set of spans describing
the nearest surface at each pixel. This process is actually pretty simple, though, if
you think of it as follows:
For each scan line, there is a set of active edges, which are those edges that intersect
the scan line. A good part of S c d d g e s () is dedicated to adding any edges that first
appear on the current scan line (scan lines are processed from the top scan line on
the screen to the bottom), removing edges that reach their bottom on the current
scan line, and x-sorting the active edges so that the active edges for the next scan can
be processed from left to right. All this is per-scan-line maintenance, and is basically
just linked list insertion, deletion, and sorting.
The heart of the action is the loop in ScanEdges() that processes the edges on the cur-
rent scan line from left to right, generating spans as needed. The best way to think of
this loop is as a surface event processor, where each edge is an event with an associated
surface. Each leading edge is an event marking the start of its surface on that scan line; if
the surface is nearer than the current nearest surface, then a span ends for the nearest
surface, and a span starts for the new surface. Each trailing edge is an event marking
the end of its surface; if its surface is currently nearest, then a span ends for that surface,
and a span starts for the next-nearest surface (the surface with the next-largest l / z at
the coordinate where the edge intersects the scan line). One handy aspect of this
event-oriented processing is that leading and trailing edges do not need to be explic-
itly paired, because they are implicitly paired by pointing to the same surface. This
saves the memory and time that would otherwise be needed to track edge pairs.
One more element is required in order for ScanEdges() to work efficiently. Each
time a leading or trailing edge occurs, it must be determined whether its surface is
nearest (at a larger l / z value than any currently active surface). In addition, for
leading edges, the currently topmost surface must be known, and for trailing edges,
it may be necessary to know the currently next-to-topmost surface. The easiest way to
accomplish this is with a surface stuck that is, a linked list of all currently active sur-
faces, starting with the nearest surface and progressing toward the farthest surface,
which, as described below, is always the background surface. (The operation of this
sort of edge event-based stack was described and illustrated in Chapter 66.) Each
leading edge causes its surface to be l/z-sorted into the surface stack, with a span
emitted if necessary. Each trailing edge causes its surface to be removed from the
surface stack, again with a span emitted if necessary. As you can see from Listing 67.1,
it takes a fair bit of code to implement this, but all that’s really going on is a surface
stack driven by edge events.

Implementation Notes
Finally, a few notes on Listing 67.1. First, you’ll notice that although we clip all poly-
gons to the view frustum in worldspace, we nonetheless later clamp them to valid

Sorted Spans in Action 1239

screen coordinates before adding them to the edge list. This catches any cases where
arithmetic imprecision results in clipped polygon vertices that are a bit outside the
frustum. I’ve only found such imprecision to be significant at very small z distances,
so clamping would probably be unnecessary if there were a near clip plane, and
might not even be needed in Listing 67.1, because of the slight nudge inward that we
give the frustum planes, as described in Chapter 65. However, my experience has
consistently been that relying on worldspace or viewspace clipping to produce valid
screen coordinates 100 percent of the time leads to sporadic and hard-todebug errors.
There is no separate routine to clear the background in Listing 67.1. Instead, a spe-
cial background surface at an effectively infinite distance is added, so whenever no
polygons are active the background color is drawn. If desired, it’s a simple matter to
flag the background surface and draw the background specially. For example, the
background could be drawn as a starfield or a cloudy sky.
The edge-processing code in Listing 67.1 is fully capable of handling concave poly-
gons as easily as convex polygons, and can handle an arbitrary number of vertices
per polygon, as well. One change is needed for the latter case: Storage for the maxi-
mum number of vertices per polygon must be allocated in the polygon structures. In
a fully polished implementation, vertices would be linked together or pointed to,
and would be dynamically allocated from a vertex pool, so each polygon wouldn’t
have to contain enough space for the maximum possible number of vertices.
Each surface has a field named state, which is incremented when a leading edge for
that surface is encountered, and decremented when a trailing edge is reached. A
surface is activated by a leading edge only if state increments to 1, and is deactivated
by a trailing edge only if state decrements to 0. This is another guard against arith-
metic problems, in this case quantization during the conversion ofvertex coordinates
from floating point to fixed point. Due to this conversion, it is possible, although
rare, for a polygon that is viewed nearly edge-on to have a trailing edge that occurs
slightly before the corresponding leading edge, and the span-generation code will
behave badly if it tries to emit a span for a surface that hasn’t yet started. It would
help performance if this sort of fix-up could be eliminated by careful arithmetic, but
I haven’t yet found a way to do so for l/z-sorted spans.
Lastly, as discussed in Chapter 66, Listing 67.1 uses the gradients for l / z with respect
to changes in screen x and y to calculate l / z for active surfaces each time a leading
edge needs to be sorted into the surface stack. The natural origin for gradient calcu-
lations is the center of the screen, which is (x,y) coordinate (0,O) in viewspace.
However, when the gradients are calculated in AddPolygonEdges(), the origin value
is calculated at the upper-left corner of the screen. This is done so that screen x and
y coordinates can be used directly to calculate l / z , with no need to adjust the coordi-
nates to be relative to the center of the screen. Also, the screen gradients grow more
extreme as a polygon is viewed closer to edge-on. In order to keep the gradient
calculations from becoming meaningless or generating errors, a small epsilon is ap-

1240 Chapter 67

plied to backface culling, so that polygons that are very nearly edge-on are culled.
This calculation would be more accurate if it were based directly on the viewing
angle, rather than on the dot product of a viewing ray to the polygon with the poly-
gon normal, but that would require a square root, and in my experience the epsilon
used in Listing 6’7.1 works fine.

Sorted Spans in Action 1 241

	previous:
	home:
	next:

