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l/z-sorted spans in Quake turned  out pretty much  the same way,  as we’ll  see in a 
moment. First, though,  I’d like  to note  up  front that this chapter is very technical 
and builds heavily on material I covered earlier in this section of the  book; if you 
haven’t already read  Chapters 59 through 66, you  really should. Make no mistake 
about it, this is commercial-quality stuff; in fact, the code in this chapter uses the 
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same sorting  technique as the test version of Quake, QTESTl.ZIP, that  id Software 
placed on the Internet in early  March 1996. This  material is the Real McCoy, true 
reports  from  the  leading  edge,  and I trust  that you’ll be patient if careful  rereading 
and some occasional catch-up  reading of earlier  chapters are  required  to  absorb 
everything contained  herein. Besides, the  ultimate  reference  for any design is  work- 
ing  code, which  you’ll find, in part, in Listing 67.1, and in its entirety  in  the file 
DDJZSORT.ZIP on  the CD-ROM. 

Quake and Sorted  Spans 
As you’ll recall from  Chapter 66, Quake uses sorted  spans  to  get  zero overdraw  while 
rendering  the world, thereby  both improving overall performance and leveling frame 
rates by speeding up scenes that would otherwise experience heavy overdraw. Our 
original design used spans  sorted by  BSP order; because we traverse the world BSP 
tree  from front-to-back relative to  the viewpoint, the order in which BSP nodes  are 
visited is a  guaranteed front-to-back sorting  order. We simply  gave each node  an 
increasing BSP sequence  number as it was visited, set each polygon’s sort key to  the 
BSP sequence  number of the node (BSP splitting  plane)  it lay on,  and used  those 
sort keys when generating spans. 
(In  a change  from  earlier designs, polygons  now are stored on nodes,  rather  than 
leaves,  which are  the convex subspaces carved out by the BSP tree. Visits to  poten- 
tially  visible  leaves are  used only to  mark  that  the polygons that  touch  those leaves 
are visible and  need to be drawn, and each marked-visible  polygon is then drawn 
after everything in front of its node has  been drawn. This  results  in less BSP splitting 
of polygons,  which is A Good  Thing, as explained below.) 
This worked flawlessly for  the world, but  had  a  couple of downsides. First, it  didn’t 
address  the issue of sorting small,  moving BSP models such as doors;  those models 
could be clipped  into  the world BSP tree’s leaves and assigned sort keys correspond- 
ing  to  the leaves into which  they fell, but  there was still the  question of  how to  sort 
multiple BSP models in the same world  leaf against each  other.  Second,  strict BSP 
order requires  that polygons be split so that every  polygon  falls entirely within a 
single leaf. This  can be stretched by putting polygons on nodes, allowing for  larger 
polygons on average, but even then, polygons  still need  to be split so that every 
polygon  falls  within the bounding volume for the node  on which it lies. The  end result, 
in either case, is more and smaller  polygons than if BSP order weren’t  used-and that, in 
turn, means lower performance, because more polygons must be clipped,  trans- 
formed,  and  projected,  more  sorting must be done,  and more  spans must be drawn. 
We figured  that if only we could avoid those BSP splits, Quake would get  a  lot faster. 
Accordingly, we switched from  sorting on BSP order to  sorting on l / z ,  and left our 
polygons unsplit.  Things  did  get  faster  at first, but  not as much as we had  expected, 
for two reasons. 
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First,  as the world BSP tree is descended, we clip each node’s bounding box in turn 
to see if it’s inside or outside each plane of the view frustum. The clipping results can 
be remembered,  and often allow the avoidance of some or all clipping for  the node’s 
polygons.  For example, all  polygons in  a  node  that has a trivially accepted  bounding 
box are likewise guaranteed to be unclipped and in the  frustum, since they  all lie 
within the node’s volume and  need no  further clipping. This efficient clipping mecha- 
nism vanished as soon as we stepped out of BSP order, because a polygon was no 
longer necessarily confined to its node’s volume. 
Second, sorting on l / z  isn’t as cheap as sorting on BSP order, because floating-point 
calculations and comparisons are involved, rather  than  integer compares. So Quake 
got faster but, like Heinlein’s fifth rocket stage, there was clear evidence of diminish- 
ing  returns. 
That wasn’t the  bad  part; after all, even a small speed increase is A Good Thing. The 
real problem was that  our initial l / z  sorting proved to be unreliable. We first ran 
into problems when two forward-facing polygons started at a  common  edge, because 
it was hard to  tell  which one was really in front (as discussed below), and we had to 
do additional floating-point calculations to  resolve these cases. This fixed the  prob- 
lems for a while, but  then  odd cases started  popping up where just  the  right 
combination of polygon alignments caused new sorting errors. We tinkered with 
those too, adding  more  code  and  incurring  additional slowdowns in the process. 
Finally,  we had everything working smoothly again, although by this point Quake 
was back  to pretty much  the same speed  it  had  been with BSP sorting. 
And then yet another  crop of sorting errors  popped up. 
We could have fixed those errors too; we’ll  take a quick look at how to deal with such 
cases  shortly.  However,  like the sixth rocket stage, the fixes  would  have made Quake 
slower than  it  had  been with BSP sorting. S o  we  gave up  and went back  to BSP order, 
and now the  code is simpler and  sorting works  reliably. It’s too bad our  experiment 
didn’t work out,  but it wasn’t  wasted time because in trying  what we did we learned 
quite  a bit. In particular, we learned  that  the  information provided by a simple, reli- 
able world ordering mechanism, such as a BSP tree, can do  more good  than is 
immediately apparent, in terms of both  performance and solid code, 
Nonetheless,  sorting on l / z  can  be a valuable  tool,  used  in the right context;  drawing a 
Quake  world just doesn’t happen to be  such a case.  In  fact, sorting on l / z  is  how  we’re 
now handling  the  sorting of multiple BSP models that lie within the same  world  leaf 
in Quake. In this case, we don’t have the  option of using BSP order (because we’re 
drawing multiple independent  trees), so we’ve set restrictions on  the BSP models to 
avoid running  into  the types of l / z  sorting errors we encountered drawing the Quake 
world. Next, we’ll look at  another application in which sorting on l / z  is quite useful, 
one where objects move  freely through space. As is so often the case in 3-D, there is 
no  one “right”  technique,  but  rather  a  great many different  techniques, each one 
handy in the  right situations. Often,  a  combination of techniques is beneficial; for 
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example, the  combination  in  Quake of BSP sorting  for  the world and l / z  sorting  for 
BSP models in the same  world  leaf. 
For the  remainder of this chapter,  I'm  going to look at  the  three main  types  of l / z  
span  sorting,  then discuss a sample 3-D app built  around l / z  span  sorting. 

Types of 1 /z Span Sorting 
As a quick refresher: With l / z  span  sorting, all the polygons in  a  scene  are  treated as 
sets of screenspace pixel spans, and l / z  (where z is distance  from  the viewpoint  in 
viewspace,  as measured along  the viewplane normal) is used to  sort  the  spans so that 
the  nearest  span  overlapping  each pixel is drawn. As I discussed in  Chapter 66, in  the 
sample program we're actually going to do all our sorting with  polygon edges, which 
represent spans in  an implicit form. 
There  are  three types  of l / z  span  sorting,  each  requiring  a  different  implementa- 
tion.  In order of increasing  speed and decreasing complexity,  they are:  intersecting, 
abutting, and  independent.  (These  are  names of my  own devising; I  haven't  come 
across  any standard  nomenclature  in  the  literature.) 

Intersecting  Span  Sorting 
Intersecting span sorting occurs when polygons  can interpenetrate.  Thus, two spans 
may cross such that  part of each  span is  visible, in which  case the  spans have to be 
split and drawn appropriately, as  shown in Figure 6'7.1. 
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Note: Polygons A and B are viewed from above. 

Intersecting span sorting. 
Figure 67.1 
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Intersecting is the slowest and most complicated type  of span sorting, because it is 
necessary  to compare l / z  values at two points in order to detect  interpenetration, 
and additional work must be done to split the spans as  necessary. Thus,  although 
intersecting span sorting certainly works, it’s not  the first choice for  performance. 

Abutting Span Sorting 
Abutting  span  sorting  occurs  when  polygons that are not  part of a continuous surface 
can butt up against one another, but don’t interpenetrate, as  shown  in  Figure  67.2.  This 
is the sorting  used in Quake, where  objects  like doors often abut walls and floors, and 
turns out to be more complicated than you might  think. The problem is that when 
an abutting polygon starts on  a given  scan line, as  with  polygon B in Figure 67.2, it 
starts at exactly the same l / z  value  as the polygon it abuts, in this case,  polygon A, so 
additional  sorting is needed when these ties happen. Of course,  the two-point sort- 
ing used for  intersecting polygons  would  work, but we’d  like  to find  something faster. 
As it turns  out,  the  additional  sorting  for  abutting polygons is actually quite simple; 
whichever  polygon  has a  greater l / z  gradient with respect to screen x (that is, which- 
ever  polygon  is heading fastest  toward the viewer along the scan line) is the  front 
one.  The  hard  part is identifylng when ties-that  is, abutting polygons-occur; due 
to floating-point imprecision, as  well as fixed-point edge-stepping imprecision that 
can move an  edge slightly on  the  screen, calculations of l / z  from  the  combination 
of screen  coordinates and l / z  gradients (as discussed  last time) can be slightly off, so 
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abutting  polygon A. 
At this  location,  both  polygons 
have  the  same 1 /z value. 

‘0’ 
viewpoint 

Note: Polygons A and B are viewed  from  above. 

Abutting span sorting. 
Figure 67.2 
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most tie cases  will  show up as near matches, not exact matches. This imprecision 
makes it necessary to perform two comparisons, one with an adjust-up by a small 
epsilon and  one with an adjust-down, creating  a  range in which near-matches are 
considered matches. Fine-tuning this epsilon to catch all  ties, without falsely report- 
ing close-but-not-abutting edges as ties, proved to be troublesome in Quake, and  the 
epsilon calculations and extra comparisons slowed things down. 
I do think  that  abutting l / z  span  sorting could have been  made reliable enough  for 
production use in Quake, were it not  that we share edges between adjacent polygons 
in Quake, so that  the world  is a large polygon mesh. When a polygon ends  and is 
followed by an  adjacent polygon that shares the  edge  that  just ended, we simply 
assume that the adjacent polygon sorts relative to other active  polygons in  the same 
place as the  one  that  ended (because the mesh  is continuous and there’s no inter- 
penetration),  rather  than  doing a l / z  sort  from scratch. This speeds things up by 
saving a  lot of sorting, but it means that if there is a  sorting  error,  a whole string of 
adjacent polygons can be sorted incorrectly, pulled  in by the  one missorted polygon. 
Missorting  is a very real hazard when a polygon  is  very nearly perpendicular to the 
screen, so that  the l / z  calculations push the limits of numeric precision, especially 
in single-precision floating point. 
Many caching schemes are possible  with abutting span sorting, because any  given 
pair of polygons, being  noninterpenetrating, will sort  in  the same order  throughout 
a scene. However, in Quake at least, the benefits of caching  sort results were out- 
weighed by the additional overhead of maintaining  the caching information, and 
every caching variant we tried actually  slowed Quake down. 

Independent  Span  Sorting 
Finally, we come to independent span  sorting,  the simplest and fastest of the  three, 
and  the type the sample code  in Listing 67.1 uses. Here, polygons never intersect 
or  touch any other polygons except  adjacent polygons with which they form  a  con- 
tinuous mesh. This  means that when a polygon starts on a scan line,  a single l / z  
comparison between that polygon and  the polygons it overlaps on  the screen is 
guaranteed to produce  correct  sorting, with no extra  calculations or tricky  cases to 
worry about. 
Independent span  sorting is ideal for scenes with  lots  of  moving objects that never 
actually touch  each  other, such as a space battle. Next, we’ll look at  an  implementa- 
tion of independent l / z  span sorting. 

1 / z  Span  Sorting in Action 
Listing  67.1  is a  portion of a  program  that  demonstrates independent l / z  span sort- 
ing. This  program is based on  the sample 3-D clipping program  from  Chapter 65; 
however, the earlier  program did hidden surface removal (HSR) by simply z-sorting 
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whole  objects and drawing them back-to-front,  while  Listing 67.1 draws  all  polygons 
by  way of a l/z-sorted  edge list.  Consequently, where the  earlier  program worked 
only so long as object centers correctly described sorting order, Listing 67.1 works 
properly for all combinations of non-intersecting and non-abutting polygons. In 
particular, Listing 67.1 correctly handles concave polyhedra; a new  L-shaped object 
(the  data for which is not included in  Listing 67.1) has been added to  the sample 
program to illustrate this  capability. The ability to  handle complex shapes makes 
Listing 67.1 vastly more useful for real-world applications than the 3-D clipping demo 
from  Chapter 65. 

LISTING  67.1  167-1 .C 
/ /  P a r t   o f  Win32  program t o   d e m o n s t r a t e   z - s o r t e d   s p a n s .   W h i t e s p a c e  
/ /  removed f o r   s p a c e   r e a s o n s .   F u l l   s o u r c e   c o d e ,   w i t h   w h i t e s p a c e ,  
/ /  a v a i l a b l e   f r o m  ftp.idsoftware.com/mikeab/ddjzsort.zip. 

Wdef i ne MAX-SPANS 10000 
C d e f i  ne MAXLSURFS 1000 
# d e f i n e  MAXKEDGES 5000 

t y p e d e f   s t r u c t   s u r f - s  { 
s t r u c t   s u r f - s  * p n e x t .   * p p r e v :  
i n t  c o l o r ,   v i   s x s t a r t ,   s t a t e :  
d o u b l e  z i n v 0 0 .   z i n v s t e p x .   z i n v s t e p y :  

1 s u r f - t :  

t y p e d e f   s t r u c t  edge-s t 
i n t  
s u r f - t  

x .   x s t e p .   l e a d i n g :  
* p s u r f :  

s t r u c t  edge-s *pnex t .   *pp rev .   *pnex t remove :  
I edge-t :  

/ /  Span.   edge,   and  sur face l i s t s  
span-t  spans[MAX_SPANSl: 
edge-t  edgesCMAX-EDGES]: 
s u r f - t  surfsCMAXLSURFS1: 

/ I  Bucke t  l i s t   o f  new edges t o  add  on  each  scan l i n e  
edge-t  newedgesrMAX-SCREEN-HEIGHT]: 

/ /  B u c k e t   l i s t   o f  edges t o  remove  on  each  scan l i n e  
edge- t  *removeedges[MAX_SCREEN~HEIGHTl; 

/ /  Head  and tail f o r   t h e   a c t i v e   e d g e   l i s t  
edge- t   edgehead .   edge ta i l :  

/ I  Edge used as  s e n t i n e l  o f  new edge l i s t s  
edge-t  maxedge = tOx7FFFFFFFl: 

/ /  Head/tail/sentinel/background s u r f a c e   o f   a c t i v e   s u r f a c e   s t a c k  
s u r f - t   s u r f s t a c k :  

/ /  p o i n t e r s   t o   n e x t   a v a i l a b l e   s u r f a c e   a n d   e d g e  
s u r f - t   * p a v a i l s u r f :  
edge- t   *pavai  1 edge: 
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I1 Returns  true  if  polygon  faces  the  viewpoint,  assuming a clockwise 
/ /  winding  of  vertices  as  seen  from  the  front. 
int PolyFacesViewer(po1ygon-t *ppoly. plane-t *pplane) 
I 

int  i; 
point-t viewvec; 

for (i-0 ; i < 3  : i++) 

11 Use an  epsilon  here s o  we don't get  polygons  tilted s o  
/ /  sharply  that  the  gradients  are  unusable  or  invalid 
if  (OotProduct (&viewvec. &pplane->normal) < -0.01) 

return 0; 

viewvec.v[il - ppoly->verts[Ol.v[il - currentpos.v[i]; 

return 1: 

1 

/ /  Add  the  polygon's  edges  to  the  global  edge  table. 
void  AddPolygonEdges (plane-t  *plane.  polygon2D-t  *screenpoly) 
I 

double  distinv,  deltax,  deltay.  slope: 
int i ,  nextvert,  numverts.  temp,  topy.  bottomy,  height; 
edge-t *pedge; 

numverts - screenpoly->numverts; 
/ /  Clamp  the polygon's vertices  just  in  case  some  very  near 
I1 points  have  wandered  out o f  range  due  to  floating-point 
/ /  imprecision 
for (i-0 ; i<numverts ; i++) { 

if (screenpoly->verts[il.x < -0.5) 
screenpoly->verts[i].x - -0.5; 

if (screenpoly->verts[i].x > ((doub1e)OIBWidth - 0 . 5 ) )  
screenpoly->verts[i].x - (doub1e)DIBWidth - 0 . 5 ;  

if (screenpoly->verts[il.y < - 0 . 5 )  
screenpoly->verts[il.y - - 0 . 5 ;  

if (screenpoly->verts[il.y > ((doub1e)DIBHeight - 0 . 5 ) )  
screenpoly->verts[i].y - (doub1e)OIBHeight - 0.5; 

I 

I /  Add  each  edge  in  turn 
for (i-0 : i<numverts ; i++) { 

nextvert - i + 1; 
if  (nextvert >- numverts) 

nextvert - 0; 
topy - (int)ceil(screenpoly->verts[il.y); 
bottomy - (int)ceil(screenpoly->verts[nextvertl.y): 
height - bottomy - topy: 
if  (height -- 0)  

if (height < 0 )  { 
continue; / /  doesn't cross  any  scan  lines 

/ /  Leading  edge 
temp - topy; 
topy - bottomy; 
bottomy - temp; 
pavailedge->leading - 1; 
deltax - screenpoly->verts[il.x - 

deltay - screenpoly->verts[i].y - 

slope - deltax / deltay: 

screenpoly->verts[nextvert].x: 

screenpoly->verts[nextvertl.y: 
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/ /  Edge  coordinates  are  in  16.16  fixed  point 
pavailedge->xstep - (int)(slope * (float)Ox10000): 
pavailedge->x - (int)((screenpoly->verts[nextvert].x + 

slope) * (f1oat)OxlOOOO): 
((floatltopy - s c r e e n p o l y - > v e r t s [ n e x t v e r t ] . y )  * 

I else I 
/ /  Trailing  edge 
pavailedge->leading - 0:  
deltax - screenpoly->verts[nextvert].x - 

screenpoly->verts[i].x; 
deltay - screenpoly->verts[nextvertl.y - 

screenpoly->verts[i].y: 
slope - deltax f deltay; 
/ /  Edge  coordinates  are  in 16.16 fixed  point 
pavailedge->xstep - (int)(slope * (f1oat)OxlOOOO): 
pavailedge->x - (int)((screenpoly->verts[il.x + 

((floatltopy - screenpoly->verts[i].y) * slope) * 
(f1oat)OxlOOOO): 

I 

I /  Put  the  edge on the  list  to  be  added on top  scan 
pedge - &newedges[topyl: 
while  (pedge->pnext->x < pavailedge->x) 

pavailedge->pnext - pedge->pnext: 
pedge->pnext - pavailedge: 
/ I  Put  the  edge on the  list  to  be  removed  after  final  scan 
pavailedge->pnextremove - removeedgesCbottomy - 11; 
removeedges[bottomy - 13 - pavailedge: 
/ I  Associate  the  edge  with  the  surface we'll create  for 
/ I  this  polygon 
pavailedge->psurf - pavailsurf: 
I /  Make  sure  we don't overflow  the  edge  array 
if  (pavailedge < &edges[MAX-EDGES]) 

pedge - pedge->pnext; 

1 

/ /  Create  the  surface, so we'll know  how  to  sort  and  draw  from 
I /  the  edges 
pavailsurf->state - 0: 
Davai 1 surf  ->col  or - currentcol  or: 

pavai 1 edge++: 

/ /  Set  up  the l/z gradients  from  the  polygon,  calculating  the 
I1 base  value  at  screen  coordinate 0.0 s o  we  can  use  screen 
I /  coordinates  directly  when  calculating l l z  from  the  gradients 
distinv - 1.0 / plane->distance: 
pavailsurf->zinvstepx - plane->normal.v[O] * distinv * 

maxscreenscaleinv * (fieldofview / 2 .0 ) :  
pavailsurf->zinvstepy - -plane->normal.vClI * distinv * 

maxscreenscaleinv * (fieldofview / 2.0):  
pavailsurf->zinv00 - plane->normal.v[Z] * distinv - 

xcenter * pavailsurf->zinvstepx - 
ycenter * pavailsurf->zinvstepy: 

/ /  Make  sure  we don't overflow  the  surface  array 
if  (pavailsurf < &surfs[MAX-SURFS]) 

pavailsurfce: 
1 
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/ /  Scan all the  edges  in  the  global  edge  table  into  spans. 
void  ScanEdges  (void) 
{ 

int x. y ;  
double  fx.  fy,  zinv,  zinv2; 
edge-t *pedge.  *pedge2.  *ptemp; 
span-t *pspan; 
surf-t *psurf,  *psurf2; 

pspan - spans; 
/ /  Set  up  the  active  edge  list  as  initially  empty,  containing 
/ /  only  the  sentinels  (which  are  also  the  background fill). Most 
/ /  of  these  fields  could  be  set  up  just  once  at  start-up 
edgehead.pnext - &edgetail: 
edgehead.pprev - NULL; 
edgehead.x - -0xFFFF; / /  left  edge  of  screen 
edgehead.leading - 1; 
edgehead.psurf - &surfstack: 
edgetail.pnext - NULL; / /  mark  edge  of  list 
edgetail.pprev - &edgehead; 
edgetai1.x - DIBWidth << 16; / I  right  edge  of  screen 
edgetai1.leading - 0; 
edgetail.psurf - &surfstack; 
/ /  The  background  surface  is  the  entire  stack  initially,  and 
/ /  is  infinitely  far  away, s o  everything  sorts  in  front  of  it. 
/ /  This  could  be  set  just  once  at  start-up 
surfstack.pnext - surfstack.pprev - &surfstack; 
surfstack.color - 0; 
surfstack.zinv00 - -999999.0; 
surfstack.zinvstepx - surfstack.zinvstepy - 0.0: 
for (y-0 ; y<OIBHeight : y++) { 

fy - (doub1e)y; 
/ /  Sort  in  any  edges  that  start on this  scan 
pedge - newedges[yl.pnext: 
pedge2 - &edgehead; 
while  (pedge !- &maxedge) ( 

while  (pedge->x > pedge2->pnext->x) 

ptemp - pedge->pnext; 
pedge->pnext - pedge2->pnext; 
pedge->pprev - pedge2; 
pedge2->pnext->pprev - pedge; 
pedgeZ->pnext - pedge: 
pedge2 - pedge: 
pedge - ptemp; 

pedge2 - pedgeZ->pnext; 

1 

/ /  Scan  out  the  active  edges  into  spans 
/ /  Start  out  with  the  left  background  edge  already  inserted, 
/ /  and  the  surface  stack  containing  only  the  background 
surfstack.state - 1; 
surfstack.visxstart - 0; 
for  (pedge-edgehead.pnext ; pedge : pedge-pedge->pnext) I 

psurf - pedge->psurf; 
if (pedge->leading) ( 

/ /  It's a  leading  edge.  Figure  out  where  it  is 
/ /  relative  to  the  current  surfaces  and  insert in 
/ /  the  surface  stack; if it's on top,  emit  the  span 
/ /  for  the  current top. 
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/ I  F i r s t ,  make s u r e   t h e   e d g e s   d o n ' t   c r o s s  
i f  ( t t p s u r f - > s t a t e  - 1) ( 

f x  - (doub1e)pedge->x  * (1 .0  / (doub le)Ox10000) :  
/ I  C a l c u l a t e   t h e   s u r f a c e ' s  l l z  v a l u e   a t   t h i s   p i x e l  
z i n v  - p s u r f - > z i n v 0 0  + p s u r f - > z i n v s t e p x  * f x  + 

I /  See i f  t h a t  makes i t  a new t o p   s u r f a c e  
p s u r f 2  - s u r f s t a c k . p n e x t ;  
z i n v 2  - p s u r f 2 - > z i n v 0 0  + p s u r f 2 - > z i n v s t e p x  * f x  + 

i f  ( z i n v  >- z i n v 2 )  { 

p s u r f - > z i n v s t e p y  * f y ;  

p s u r f Z - > z i n v s t e p y  * f y :  

/ I  I t ' s  a new t o p   s u r f a c e  
/ I  e m i t   t h e   s p a n   f o r   t h e   c u r r e n t   t o p  
x - (pedge->x  + OxFFFF) >> 16: 
pspan->coun t  - x - p s u r f 2 - > v i s x s t a r t :  
i f  (pspan->coun t  > 0) ( 

pspan->y  - y :  
pspan->x  - p s u r f 2 - > v i s x s t a r t ;  
p s p a n - > c o l o r  - p s u r f 2 - > c o l o r :  
/ I  Make s u r e  we d o n ' t   o v e r f l o w  
I /  t h e   s p a n   a r r a y  
i f  (pspan < &spansCMAX-SPANS]) 

pspan++: 
1 
p s u r f - > v i s x s t a r t  - x :  
/ I  Add t h e   e d g e   t o   t h e   s t a c k  
p s u r f - > p n e x t  - p s u r f 2 :  
p s u r f 2 - > p p r e v  - p s u r f :  
s u r f s t a c k . p n e x t  - p s u r f :  
p s u r f - > p p r e v  - & s u r f s t a c k ;  

/ I  Not  a new t o p :   s o r t   i n t o   t h e   s u r f a c e   s t a c k .  
/ I  Guaranteed t o   t e r m i n a t e   d u e   t o   s e n t i n e l  
/ I  b a c k g r o u n d   s u r f a c e  
do { 

1 e l s e  { 

p s u r f 2  - p s u r f 2 - > p n e x t :  
z i n v 2  - p s u r f Z - > z i n v 0 0  + 

p s u r f 2 - > z i n v s t e p x  * f x  + 
p s u r f 2 - > z i n v s t e p y  * f y ;  

1 w h i l e   ( z i n v  < z i n v 2 ) :  
/ I  I n s e r t   t h e   s u r f a c e   i n t o   t h e   s t a c k  
p s u r f - > p n e x t  - p s u r f 2 :  
p s u r f - > p p r e v  - p s u r f Z - > p p r e v :  
p s u r f 2 - > p p r e v - > p n e x t  - p s u r f :  
p s u r f 2 - > p p r e v  - p s u r f :  

1 
1 

1 e l s e  { 
I /  I t ' s  a t r a i l i n g   e d g e :  i f  t h i s  was t h e   t o p   s u r f a c e .  
I /  emi t   t he   span   and   remove  it. 
I /  F i r s t ,  make s u r e   t h e   e d g e s   d i d n ' t   c r o s s  
i f  ( - p s u r f - > s t a t e  - 0 )  { 

i f  ( s u r f s t a c k . p n e x t  - p s u r f )  { 
/ I  I t ' s  on t o p ,   e m i t   t h e   s p a n  
x - ( (pedge->x  + OxFFFF) >> 16 ) :  
pspan->coun t  - x - p s u r f - > v i s x s t a r t :  
i f  (pspan->coun t  > 0 )  { 

pspan->y  - y: 
pspan->x  - p s u r f - > v i s x s t a r t :  
p s p a n - > c o l o r  - p s u r f - > c o l o r :  
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/ /  Make s u r e  we d o n ' t   o v e r f l o w  
/ /  t h e   s p a n   a r r a y  
i f  (pspan < &spans[MAX-SPANSl) 

p s p a n t c ;  
I 

1 
p s u r f - > p n e x t - > v i s x s t a r t  - x;  

/ /  Remove t h e   s u r f a c e   f r o m   t h e   s t a c k  
p s u r f - > p n e x t - > p p r e v  - p s u r f - > p p r e v ;  
p s u r f - > p p r e v - > p n e x t  - p s u r f - > p n e x t ;  

} 

/ /  Remove e d g e s   t h a t   a r e   d o n e  
pedge - removeedgesCy1; 
w h i l e   ( p e d g e )  { 

p e d g e - > p p r e v - > p n e x t  - pedge->pnex t ;  
p e d g e - > p n e x t - > p p r e v  - pedge->pprev ;  
pedge - pedge->pnextremove:  

1 

/ /  S t e p   t h e   r e m a i n i n g   e d g e s   o n e   s c a n   l i n e .   a n d   r e - s o r t  
f o r   ( p e d g e - e d g e h e a d . p n e x t  ; pedge !- & e d g e t a i l  ; 1 { 

ptemp - p e d g e - > p n e x t ;  
/ /  S t e p   t h e   e d g e  
pedge->x  +- p e d g e - > x s t e p ;  
/ /  Move t h e   e d g e   b a c k   t o   t h e   p r o p e r   s o r t e d   l o c a t i o n .  
/ /  i f  n e c e s s a r y  
w h i l e   ( p e d g e - > x  < p e d g e - > p p r e v - > x )  I 

pedge2 - pedge->pprev ;  
pedge2->pnex t  - pedge->pnex t :  
p e d g e - > p n e x t - > p p r e v  - pedge2: 
p e d g e 2 - > p p r e v - > p n e x t  - pedge; 
pedge->pprev  - pedgeZ->pprev :  
p e d g e - > p n e x t  - pedge2; 
pedge2->pprev  - pedge: 

1 
pedge - ptemp; 

I 
1 
pspan->x  - -1: / /  m a r k   t h e   e n d   o f   t h e   l i s t  

/ /  D r a w  a l l   t h e   s p a n s   t h a t   w e r e   s c a n n e d   o u t .  
v o i d  DrawSpans ( v o i d )  
I 

span-t   *pspan; 
f o r  (pspan-spans ; pspan->x  !- -1 ; pspan++) 

memset  (pDIB + ( D I B P i t c h  * p s p a n - > y )  + p s p a n - > x .  
p s p a n - > c o l   o r ,  
p s p a n - > c o u n t ) :  

1 

/ /  C l e a r   t h e   l i s t s   o f   e d g e s   t o   a d d   a n d   r e m o v e  on e a c h   s c a n   l i n e .  
v o i d   C l e a r E d g e L i s t s ( v o i d 1  
( 

i n t  i: 
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f o r  (i=O ; i < D I B H e i g h t  ; i++) { 

n e w e d g e s [ i l . p n e x t  = &maxedge; 
removeedges [ i ]  = NULL; 

} 
1 

/ /  R e n d e r   t h e   c u r r e n t   s t a t e   o f   t h e   w o r l d  
v o i d   U p d a t e W o r l d O  
{ 

HPALETTE h o l d o a l  : 

t o  t h e   s c r e e n .  

HDC 
HBITMAP 
polygon2D-t  
po l ygon- t  
c o n v e x o b j e c t - t  
i n t  
p l   a n e - t  
p o i   n t L t  

hdcScreen.   hdcDIBSect ion ;  
h o l   d b i   t m a p :  
s c r e e n p o l y ;  
* p p o l y .   t p o l y 0 .   t p o l y l .   t p o l y 2 ;  
* p o b j e c t ;  
i. j .  k ;  
p l a n e ;  
t n o r m a l  : 

U p d a t e v i e w P o s o ;  
S e t U p F r u s t u m O :  
C l e a r E d g e L i s t s O ;  
p a v a i l s u r f  = s u r f s :  
p a v a i l e d g e  = edges;  

I /  Draw a l l   v i s i b l e   f a c e s   i n   a l l   o b j e c t s  
p o b j e c t  = o b j e c t h e a d . p n e x t ;  
w h i l e   ( p o b j e c t  != & o b j e c t h e a d )  [ 

p p o l y  = p o b j e c t - > p p o l y ;  
f o r  (i=O : i < p o b j e c t - > n u m p o l y s  : i++) { 

I /  Move t h e   p o l y g o n   r e l a t i v e   t o   t h e   o b j e c t   c e n t e r  
tpo ly0.numver t .s  = p p o l y [ i l . n u m v e r t s ;  
f o r  ( j = O  ; j < t p o l y O . n u m v e r t s  ; j++) { 

f o r  (k=O ; k<3 ; k++) 
t p o l y O . v e r t s [ j l . v [ k l  = p p o l y [ i l . v e r t s [ j l . v [ k l  + 

p o b j e c t - > c e n t e r . v [ k l ;  
I 
i f  ( P o l y F a c e s V i e w e r ( & t p o l y O .  & p p o l y [ i l . p l a n e ) )  { 

i f  ( C l i p T o F r u s t u m ( & t p o l y O .   & t p o l y l ) )  t 
c u r r e n t c o l o r  = p p o l y [ i l . c o l o r ;  
T r a n s f o r m P o l y g o n   ( & t p o l y l .   & t p o l y 2 ) ;  
P r o j e c t P o l y g o n   ( & t p o l y 2 .   & s c r e e n p o l y ) :  

/ I  Move t h e   p o l y g o n ' s   p l a n e   i n t o   v i e w s p a c e  
/ /  F i r s t  move i t  i n t o   w o r l d s p a c e   ( o b j e c t   r e l a t i v e )  
t n o r m a l  = p p o l y [ i l . p l a n e . n o r m a l ;  
p l a n e . d i s t a n c e  = p p o l y [ i ] . p l a n e . d i s t a n c e  + 

D o t P r o d u c t   ( & p o b j e c t - > c e n t e r .   & t n o r m a l ) ;  

/ /  Now t r a n s f o r m  i t  i n t o   v i e w s p a c e  
/ I  D e t e r m i n e   t h e   d i s t a n c e   f r o m   t h e   v i e w p o n t  
p l a n e . d i s t a n c e  -= 

D o t P r o d u c t   ( & c u r r e n t p o s .   & t n o r m a l  

I /  R o t a t e   t h e   n o r m a l   i n t o   v i e w   o r i e n t a t  
p lane.norma1  .v [O]  = 

D o t p r o d u c t   ( & t n o r m a l .   & v r i g h t ) :  
p l a n e . n o r m a 1   . v [ l l  = 

D o t p r o d u c t   ( & t n o r m a l .   & v u p ) ;  

1 ;  

i o n  
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p lane.norma1  .v [21  - 
AddPo lygonEdges   (&p lane ,   &sc reenpo ly ) :  

D o t P r o d u c t   ( & t n o r r n a l .   & v p n ) :  

1 
1 

1 
p o b j e c t  = p o b j e c t - > p n e x t ;  

1 
ScanEdges 0 ;  
DrawSpans 0 ;  

/ /  We’ve  drawn  the  f rame;   copy i t  t o   t h e   s c r e e n  
hdcScreen - GetDC(hwndOutput1: 
h o l d p a l  - SelectPalette(hdcScreen. hpalDIB.   FALSE);  
RealizePalette(hdcScreen): 
hdcDIBSec t ion  - CreateCompatibleDC(hdcScreen): 
h o l d b i t m a p  - SelectObject(hdcD1BSection. h D I B S e c t i o n ) ;  
B i t B l t ( h d c S c r e e n ,  0 .   0 ,  D IBWid th .   D IBHe igh t .   hdcDIBSec t ion .  

S e l   e c t P a l   e t t e (   h d c S c r e e n ,   h o l d p a l  , FALSE) ; 
ReleaseDC(hwndDutput ,   hdcscreen) ;  
SelectObject(hdcD1BSection. h o l d b i t m a p ) :  
D e l e t e D C ( h d c D 1 B S e c t i o n ) ;  

0.  0. S R C C O P Y ) :  

By the same token, Listing  67.1 is quite  a  bit  more  complicated  than  the  earlier  code. 
The earlier code’s HSR consisted of a z-sort  of objects, followed by the drawing of the 
objects in back-to-front order, one polygon at a time. Apart  from  the simple object 
sorter, all that was needed was backface culling and a polygon rasterizer. 
Listing 6’7.1 replaces  this  simple  pipeline with a  three-stage HSR process. After 
backface culling,  the  edges of each of the polygons in  the  scene are  added to the 
global edge list, by  way  of AddPolygonEdges(). After  all edges have been  added,  the 
edges  are turned  into spans by ScanEdgesO, with each pixel on the  screen  being 
covered by one  and only one span (that is, there’s no overdraw). Once all the  spans 
have been  generated,  they’re drawn by Drawspans(), and rasterization is complete. 
There’s  nothing tricky aboutAddPolygonEdges(), and Drawspans(), as implemented 
in Listing 6’1.1, is very straightforward as  well. In an implementation  that  supported 
texture  mapping, however,  all the  spans  wouldn’t  be put  on  one global span list and 
drawn at once, as  is done in Listing  67.1, because that would result  in drawing spans 
from all the  surfaces in no particular  order. (A surface is a drawing object  that’s 
originally described by a polygon, but  in ScanEdgesO there is no polygon in  the 
classic sense of a  set of vertices bounding  an  area,  but  rather  just  a  set of edges and a 
surface  that  describes how to draw the  spans  outlined by those  edges.) That would 
mean constantly skipping  from one texture  to  another, which in  turn would hurt 
processor  cache  coherency  a  great  deal, and would  also incur  considerable  overhead 
in  setting up  gradient  and perspective calculations  each time a  surface was drawn. In 
Quake, we have a  linked list of spans  hanging off each  surface, and draw all the  spans 
for one surface  before moving on to  the  next  surface. 
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The  core of Listing 67.1, and  the most complex  aspect of l/z-sorted spans, is 
ScanEdgesO, where the global edge list  is converted into  a set of spans describing 
the  nearest surface at each pixel. This process is  actually pretty simple, though, if 
you think of it as  follows: 
For each scan line,  there is a  set of  active edges, which are those edges that  intersect 
the scan line. A good  part of S c d d g e s ( )  is dedicated to adding any edges that first 
appear  on  the  current scan line (scan lines are processed from  the  top scan line on 
the  screen to the  bottom), removing edges that  reach their bottom on the current 
scan line, and x-sorting the active edges so that  the active edges for  the  next scan can 
be processed from left to right. All this is  per-scan-line maintenance, and is basically 
just linked list insertion,  deletion, and sorting. 
The heart of the action is the loop in ScanEdges() that processes the edges on the cur- 
rent scan line  from left to right,  generating spans as needed.  The best way to think of 
this loop is as a surface  event  processor,  where each edge is an event  with an associated 
surface.  Each leading edge is an event  marking the start of its surface on that scan  line; if 
the surface is nearer than the  current nearest surface, then a span ends for the nearest 
surface, and a  span starts for  the new surface. Each trailing edge is an event marking 
the  end of its surface; if its surface is currently  nearest, then a span ends for that surface, 
and a span starts for  the next-nearest surface (the surface with the next-largest l / z  at 
the  coordinate where the  edge intersects the scan line).  One handy aspect of this 
event-oriented processing is that  leading and trailing edges do  not  need to be explic- 
itly paired, because they are implicitly paired by pointing to the same surface. This 
saves the memory and time that would otherwise be needed to track edge pairs. 
One  more  element is required in order  for ScanEdges() to work  efficiently.  Each 
time a  leading or trailing edge occurs, it must be determined  whether its surface is 
nearest (at a  larger l / z  value than any currently active surface).  In  addition,  for 
leading edges, the currently topmost surface must be known, and  for trailing edges, 
it may be necessary  to  know the  currently next-to-topmost surface. The easiest way to 
accomplish this is  with a surface stuck that is, a linked list  of  all currently active  sur- 
faces, starting with the  nearest surface and progressing toward the  farthest surface, 
which, as described below,  is  always the  background surface. (The operation of this 
sort of edge event-based stack was described and illustrated in Chapter 66.) Each 
leading  edge causes  its surface to be l/z-sorted  into  the surface stack, with a  span 
emitted if necessary.  Each trailing edge causes its surface to be removed from the 
surface stack, again with a span emitted if necessary. As you can  see from Listing  67.1, 
it takes a fair bit of code to implement this, but all  that’s  really going on is a surface 
stack driven by edge events. 

Implementation Notes 
Finally, a few notes  on Listing  67.1.  First,  you’ll notice that  although we clip all  poly- 
gons to the view frustum in worldspace, we nonetheless  later clamp them to  valid 
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screen coordinates  before  adding  them to the  edge list. This catches any  cases where 
arithmetic imprecision results in clipped polygon  vertices that  are  a bit outside the 
frustum. I’ve only found such imprecision to be significant at very  small z distances, 
so  clamping would probably be unnecessary if there were a  near clip plane,  and 
might not even be needed in Listing  67.1, because of the slight nudge inward that we 
give the frustum planes, as described in Chapter 65.  However, my experience has 
consistently been  that relying on worldspace or viewspace clipping to produce valid 
screen coordinates 100 percent of the time  leads  to  sporadic and  hard-todebug errors. 
There is no separate  routine to clear the  background in Listing  67.1. Instead,  a spe- 
cial background surface at  an effectively infinite distance is added, so whenever no 
polygons are active the  background color is drawn. If desired, it’s a simple matter to 
flag the  background surface and draw the  background specially. For example,  the 
background  could be drawn as a starfield or a cloudy sky. 
The edge-processing code  in Listing  67.1 is fully capable of handling concave  poly- 
gons as  easily  as  convex polygons, and can handle  an  arbitrary  number of  vertices 
per polygon, as  well. One change is needed  for  the  latter case: Storage for  the maxi- 
mum  number of vertices per polygon must be allocated in the polygon structures. In 
a fully polished implementation, vertices  would be linked together or pointed to, 
and would be dynamically allocated from  a vertex pool, so each polygon wouldn’t 
have to contain enough space for  the maximum possible number of vertices. 
Each surface has a field named state, which is incremented when a  leading  edge  for 
that surface is encountered,  and  decremented when a trailing edge is reached. A 
surface is activated by a  leading  edge only if state increments to 1, and is deactivated 
by a trailing edge only if state decrements to 0. This is another  guard against arith- 
metic problems, in this  case quantization during  the conversion ofvertex  coordinates 
from floating point to fixed point. Due to this conversion, it is possible, although 
rare,  for  a polygon that is viewed nearly edge-on to  have a trailing edge  that occurs 
slightly before the  corresponding  leading  edge, and  the span-generation code will 
behave badly if it tries to emit  a span for  a surface that hasn’t yet started.  It would 
help  performance if this sort of fix-up could  be  eliminated by careful arithmetic, but 
I haven’t yet found  a way to do so for  l/z-sorted spans. 
Lastly, as  discussed in Chapter 66, Listing  67.1  uses the  gradients  for l / z  with respect 
to changes in screen  x and y to calculate l / z  for active surfaces each time a  leading 
edge  needs to be sorted  into  the surface stack. The natural origin for  gradient calcu- 
lations is the  center of the  screen, which is (x,y) coordinate (0,O) in viewspace. 
However, when the  gradients  are calculated in AddPolygonEdges(), the origin value 
is calculated at the upper-left corner of the screen. This is done so that  screen x and 
y coordinates can be used directly to calculate l / z ,  with no  need to adjust the coordi- 
nates to be relative to the  center of the screen. Also, the  screen  gradients grow more 
extreme as a polygon is viewed closer to edge-on. In  order to keep the  gradient 
calculations from becoming meaningless or generating  errors,  a small epsilon is ap- 
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plied to  backface culling, so that polygons that are very nearly edge-on are culled. 
This calculation would be more accurate if it were based directly on the viewing 
angle, rather  than  on  the  dot  product of a viewing  ray to the polygon  with the poly- 
gon  normal, but that would require a square  root, and in my experience  the epsilon 
used in Listing 6’7.1 works fine. 
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