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3-d clipping and other thoughts
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Anecdote the first: In 
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on to one of his  books,  Frank Herbert,  author of 
proached by a friend who  claimed he  (the friend) 
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ogramming micros for 15 years, and writing about 
until about a year ago, I had never-not  once!- 

had anyone offer to sell me a technical idea.  In  the last  year,  it’s happened multiple 
times,  generally via unsolicited email along  the lines of Herbert’s tale. 
This trend toward  selling  ideas is one symptom  of an  attitude  that I’ve noticed more 
and  more  among programmers over the past few  years-an attitude of which  soft- 
ware patents  are  the most  obvious  manifestation-a desire to  think  something up 
without breaking a sweat, then  let  someone else’s hard work  make  you  money.  It’s an 
attitude  that says, “I’m so smart  that my ideas alone set me apart.” Sorry,  it doesn’t 
work that way in  the real world. Ideas are a dime a dozen in programming, too; I 
have a lifetime’s  worth  of  article and software ideas written  neatly in a notebook, and 
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I know  several  truly original thinkers who have far  more yet.  Folks,  it’s not  the ideas; 
it’s design, implementation, and especially hard work that make the difference. 
Virtually  every idea I’ve encountered in 3-D graphics was invented  decades ago. You 
think you  have a clever graphics idea?  Sutherland, Sproull, Schumacker, Catmull, 
Smith, Blinn, Glassner, Kajiya, Heckbert, or Teller probably thought of your idea 
years ago. (I’m serious-spend a few  weeks reading  through  the  literature on 3-D 
graphics, and you’ll be amazed at what’s already been invented and published.) If 
they thought it was important  enough, they wrote a  paper  about  it,  or  tried to com- 
mercialize it, but what  they didn’t  do was try  to charge  people  for  the  idea itself. 
A closely related  point is the astonishing lack  of gratitude some programmers show 
for the  hard work and sense of community that went into building the knowledge 
base  with  which  they  work.  How about this? Anyone  who thinks they have a  unique 
idea  that they want to “own” and milk for money can do so-but first they  have to 
track down and appropriately  compensate all the  people who made possible the 
compilers, algorithms, programming courses, books, hardware, and so forth  that 
put  them in  a position to have their  brainstorm. 
Put  that way, it  sounds like a silly idea, but  the  idea  behind software patents is pre- 
cisely that eventually everyone will own parts of our communal knowledge base, and 
that  programming will become in large part  a process of properly identifylng and 
compensating  each and every owner of the  techniques you use. All I can say is that if 
we do go down that  path,  I  guarantee  that it will be a  poorer profession for all  of us- 
except the  patent attorneys, I guess. 
Anecdote the  third: A while  back, I  had  the  good  fortune to have lunch down by 
Seattle’s waterfront with  Neal Stephenson,  the  author of Snow Crash and The Diu- 
mond Age (one of the best SF books I’ve come across in  a  long time). As he talked 
about  the  nature of networked technology and what he  hoped to see emerge, he 
mentioned  that  a  couple of  blocks  down the  street was the pawn shop where Jimi 
Hendrix  bought his first guitar. His point was that if a  cheap  guitar  hadn’t  been 
available, Hendrix’s unique  talent would never have emerged. Similarly, he views the 
networking of  society  as a way to get affordable creative tools to many people, so as 
much  talent as  possible can be unearthed  and developed. 
Extend that to programming. The way it should work is that  a steady  flow  of informa- 
tion circulates, so that everyone can do  the best work they’re capable of. The idea is 
that I don’t gain by intellectually impoverishing you, and vice-versa;  as we both com- 
pete and (intentionally or otherwise) share ideas, both our products  become better, 
so the market grows larger and everyone benefits. 
That’s the way things have worked with programming  for  a  long time. So far as I can 
see it has worked remarkably well, and  the  recent signs  of change make me con- 
cerned  about  the  future of our profession. 
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Things aren’t  changing everywhere, though; over the past  year,  I’ve circulated a good 
bit of info about 3-D graphics, and plan to keep on  doing  it as long as I can. Next, 
we’re going to  take a look at 3-D clipping. 

3-D Clipping Basics 
Before I  got deeply into 3-D, I  kept  hearing how  difficult 3-D clipping was, so I was 
pleasantly surprised when I actually got around to  doing it and  found that it was 
quite straightforward, after all. At heart, 3-D clipping is nothing  more  than evaluat- 
ing whether and where a line  intersects a plane; in this context, the plane is considered 
to  have an “inside” (a side on which points are to be  kept) and an “outside” (a side 
on which points are to be removed or clipped). We can  easily extend this  single 
operation to  polygon clipping, working  with the line segments that form the edges 
of a polygon. 
The most common application of 3-D clipping is as part of the process  of hidden 
surface removal. In this application, the  four planes that make up  the view volume, 
or view frustum,  are used  to  clip away parts of  polygons that  aren’t visible. Sometimes 
this  process includes clipping to near and far plane, to restrict the depth of the 
scene. Other applications include clipping to splitting planes while building BSP 
trees, and clipping moving  objects to convex  sectors  such  as BSP leaves. The clipping 
principles I’ll  cover  apply to any sort of 3-D clipping task, but clipping to the frustum 
is the specific context  in which  I’ll  discuss clipping below. 
In a commercial application, you  wouldn’t  want  to  clip  every  single  polygon in the 
scene database individually. As I mentioned in the last chapter,  the use  of bounding 
volumes  to  cull chunks of the scene database that fall entirely outside the  frustum, 
without having  to consider each polygon  separately, is an important  performance 
aspect  of scene rendering.  Once that’s done, however, you’re still left  with a set of 
polygons that may be entirely inside, or partially or completely outside, the frustum. 
In this chapter, I’m going to  talk about how  to  clip those remaining polygons. 1’11 
focus on the basics  of 3 D  clipping, the stuff I wish I’d known when I started doing 3-D. 
There  are plenty  of ways to speed up clipping under various circumstances, some of 
which  I’ll mention,  but  the material covered  below will  give  you the tools  you need to 
implement  functional 3-D clipping. 

Intersecting a Line  Segment with a Plane 
The fundamental 3-D clipping operation is clipping a line segment to a plane. There 
are two parts to  this operation:  determining if the line is clipped by (intersects) the 
plane at all and, if it is clipped, calculating the  point of intersection. 
Before we can  intersect a line  segment with a plane, we must  first  define  how  we’ll  repre- 
sent the line segment and  the plane. The segment will be represented in the obvious 
way by the (x,y,z) coordinates of its two endpoints; this extends well to  polygons, 
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where each vertex is an (x,y,z) point. Planes can  be described in  many ways, among 
them  are  three  points  on  the  plane, a point  on  the  plane  and  a  unit  normal,  or  a  unit 
normal and a distance  from  the  origin  along  the  normal; we’ll use the  latter defini- 
tion.  Further, we’ll define  the  normal to point to the inside (unclipped  side) of the 
plane. The structures  for  points, polygons, and planes are shown  in  Listing 65.1. 

LISTING 65.1 165-1 .h 
t y p e d e f   s t r u c t  I 

doub le  vC31; 
1 p o i n t - t ;  

t y p e d e f   s t r u c t  I 

I po in t2D- t :  

t y p e d e f   s t r u c t  { 

d o u b l e   x .   y ;  

i n t   c o l   o r :  
i n t   n u m v e r t s  ; 
p o i n t - t  verts[MAX-POLY-VERTSl; 

1 po lygon- t :  

t y p e d e f   s t r u c t  I 
i n t   c o l o r ;  
i n t  
po in t2D- t  vertsCMAX-POLY-VERTSI; 

numver ts ;  

1 polygon2D-t; 

t y p e d e f   s t r u c t   c o n v e x o b j e c t L s  { 
s t r u c t   c o n v e x o b j e c t - s  *pnex t ;  
p o i n t - t  c e n t e r ;  
doub le  v d i   s t ;  
i n t  numpolys : 
po lygon- t  * p p o l y ;  

1 c o n v e x o b j e c t - t :  

t y p e d e f   s t r u c t  I 
d o u b l e   d i s t a n c e ;  
p o i n t - t   n o r m a l  ; 

1 p l a n e - t ;  

Given a  line  segment, and  a plane  to which to clip the  segment,  the first question is 
whether  the  segment is entirely on the inside or  the  outside of the  plane,  or  inter- 
sects the  plane. If the  segment is on the inside, then  the  segment is not clipped by 
the  plane, and we’re done. If it’s on the  outside,  then it’s entirely  clipped, and we’re 
likewise done. If it  intersects  the  plane,  then we have to remove the  clipped  portion 
of the  line by replacing  the  endpoint on the  outside of the  plane with the  point of 
intersection between the  line and the  plane. 
The way to answer  this question is to find out which  side  of the  plane  each  endpoint 
is on,  and  the  dot  product is the  right tool for  the job. As you  may recall from Chap- 
ter 61, dotting any vector with a  unit  normal  returns  the  length of the  projection of 
that vector onto the  normal.  Therefore, if  we take  any point  and  dot  it with the  plane 
normal we’ll find out how far from the origin the  point is,  as measured  along  the 
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plane  normal.  Another way to think of this is to say that  the dot  product of a point 
and  the  plane  normal  returns how far from  the origin along  the  normal  the  plane 
would  have  to  be in order to have the  point lie  within the  plane, as  if  we slid the 
plane  along the normal until it touched  the  point. 
Now, remember  that our definition of a plane is a unit  normal and a distance along 
the  normal. That means that we have a distance for  the  plane as part of the  plane 
structure, and we can get  the distance at which the  plane would  have to be to touch 
the  point from the dot  product of the  point  and  the normal; a simple comparison of 
the two values  suffices to tell  us  which  side  of the  plane the  point is on. If the dot 
product of the  point  and  the plane  normal is greater  than  the  plane distance, then 
the  point is in front of the  plane (inside the volume being clipped to); if  it’s  less, 
then  the  point is outside the volume and should  be clipped. 
After we do this  twice, once  for each line endpoint, we know  everything  necessary to 
categorize our line segment. If both  endpoints  are  on  the same  side  of the  plane, 
there’s  nothing  more  to do, because the line is either completely inside or com- 
pletely outside; otherwise,  it’s on to  the  next  step, clipping the  line  to  the  plane by 
replacing the outside vertex  with the  point of intersection of the line and  the plane. 
Happily,  it turns out that we already  have  all  of the information we need to do this. 
From our earlier tests, we already know the  length  from  the  plane,  measured  along 
the  normal, to the inside endpoint; that’s just  the distance,  along the  normal, of 
the inside endpoint from the origin (the  dot  product of the  endpoint with the 
normal), minus the  plane  distance, as  shown in Figure 65.1. We also  know the 
length of the line  segment, again measured as projected onto  the  normal; that’s 
the difference between the distances along the  normal of the inside and outside 
endpoints  from  the  origin.  The  ratio of these two lengths is the  fraction of the 
segment that remains  after  clipping. If  we scale the  x, y, and z lengths of the  line 
segment by that  fraction,  and  add  the results to the inside endpoint, we get a new, 
clipped endpoint  at  the  point of intersection. 

Polygon  Clipping 
” . .  - 

Line clipping is fine for wireframe rendering,  but what we really  want to do is  poly- 
gon rendering of  solid  models,  which  requires  polygon  clipping. As with  line  segments, 
the clipping process  with  polygons is to determine if they’re inside, outside, or par- 
tially inside the clip volume, lopping off  any  vertices that  are outside the clip  volume 
and substituting vertices at  the intersection between the polygon and  the clip plane, 
as  shown in Figure 65.2. 
An easy  way to  clip a polygon  is  to decompose it into a set of edges, and clip each edge 
separately  as a line segment. Let’s define a polygon  as a set of  vertices that wind  clock- 
wise around  the outside  of the polygonal area, as  viewed from the  front side of the 
polygon; the edges are implicitly defined by the  order of the vertices. Thus,  an edge is 
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the line segment described by the two adjacent vertices that form its endpoints. We’ll 
clip a polygon by clipping each edge individually, emitting vertices for the resulting 
polygon as appropriate,  depending  on  the clipping state of the edge. If the start point 
of the edge is inside, that point is added to the  output polygon. Then, if the start and 
end points are in different states (one inside and  one  outside), we clip the edge to the 
plane, as described above, and  add  the  point  at which the line intersects the clip plane 
as the next polygon  vertex,  as  shown  in  Figure 65.3. Listing 65.2 shows a polygon- 
clipping function. 

LISTING 65.2 165-2.c 
i n t   C l i p T o P l a n e ( p o 1 y g o n - t   * p i n .   p l a n e - t   * p p l a n e .   p o l y g o n - t   * p o u t )  
I 

i n t  i, j .  n e x t v e r t .   c u r i n .   n e x t i n :  
d o u b l e   c u r d o t .   n e x t d o t ,   s c a l e :  
p o i n t - t   * p i n v e r t .   * p o u t v e r t :  

p i n v e r t  = p i n - > v e r t s ;  
p o u t v e r t  = p o u t - > v e r t s ;  

c u r d o t  = D o t P r o d u c t ( p i n v e r t .   & p p l a n e - > n o r m a l ) :  
c u r i n  = ( c u r d o t  >= p p l a n e - > d i s t a n c e ) :  

f o r  (i=O : i < p i n - > n u m v e r t s  : i++) 
I 

n e x t v e r t  = (i + 1) % p i n - > n u m v e r t s :  

/ /  Keep t h e   c u r r e n t   v e r t e x  i f  i t ’ s   i n s i d e   t h e   p l a n e  
i f  ( c u r i n )  

*poutver t++ = * p i n v e r t ;  

n e x t d o t  = D o t P r o d u c t ( & p i n - > v e r t s [ n e x t v e r t l ,  & p p l a n e - > n o r m a l ) :  
n e x t i n  = ( n e x t d o t  >= p p l a n e - > d i s t a n c e ) ;  

Add a c l i p p e d   v e r t e x  i f  one  end o f   t h e   c u r r e n t   e d g e   i s  
i n s i d e   t h e   p l a n e   a n d   t h e   o t h e r   i s   o u t s i d e  
( c u r i n  != n e x t i n )  

s c a l e  = ( p p l a n e - > d i s t a n c e  - c u r d o t )  / 

f o r  ( j = O  : j < 3  : j++) 
I 

( n e x t d o t  - c u r d o t ) :  

p o u t v e r t - > v [ j l  = p i n v e r t - > v [ j l  + 
((pin->verts[nextvertl.v[jl - p i n v e r t - > v C J l )  * 

1 
poutver t++:  

s c a l e ) :  

c u r d o t  = n e x t d o t ;  
c u r i n  = n e x t i n ;  
p i n v e r t + + :  

I 

p o u t - > n u m v e r t s  = p o u t v e r t  - p o u t - > v e r t s ;  
i f  ( p o u t - > n u m v e r t s  < 3 )  

r e t u r n  0:  
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p o u t - > c o l o r  - p i n - > c o l o r :  
return 1; 

I 

Believe it or  not, this technique,  applied  in turn to each  edge, is  all  that’s needed to 
clip a polygon to a  plane. Better yet, a polygon can be clipped to multiple planes by 
repeating  the above process once  for  each clip plane, with each  interation trimming 
away any part of the polygon that’s clipped by that  particular  plane. 
One particularly useful aspect of  3-D clipping is that if you’re drawing texture  mapped 
polygons, texture  coordinates can be clipped in exactly the same way as  (x,y,z) coor- 
dinates. In fact, the very  same fraction that’s used to advance x, y, and z from the 
inside point to the  point of intersection with the clip plane can be used to advance 
the  texture  coordinates as  well, so only one extra multiply and  one extra  add  are 
required  for  each  texture  coordinate. 

Clipping to the Frustum 
Given a polygon-clipping function, it’s  easy to clip to the  frustum: set up  the  four 
planes for  the sides  of the  frustum, with another  one  or two planes for  near  and far 
clipping, if desired;  next, clip each potentially visible  polygon to each  plane  in  turn; 
then draw  whatever  polygons emerge  from  the clipping process. Listing 65.3 is the 
core  code  for  a simple 3-D clipping example that allows  you to move around  and 
look at polygonal models from any angle. The full code  for this program is available 
on  the CD-ROM in the file DDJCLIP.ZIP. 
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LISTING 65.3 165-3.c 
i n t  DIBWidth.   DIBHeight :  
i n t   D I B P i t c h :  
d o u b l e   r o l l ,   p i t c h ,  yaw: 
d o u b l e   c u r r e n t s p e e d ;  
p o i n t - t   c u r r e n t p o s ;  
d o u b l e   f i e l d o f v i e w ,   x c e n t e r .   y c e n t e r :  
d o u b l e   x s c r e e n s c a l  e ,  ysc reensca le .   maxsca l  e :  
i n t   n u m o b j e c t s :  
doub le   speedsca le  - 1 . 0 ;  
p l a n e - t  frustumplanesCNUM-FRUSTUM_PLANESl: 
double  mro l lC31C31 - ((1.  0 .  01, CO. 1. 01. (0 .  0 .  111: 
double  mpitchC31C31 = I { l ,  0 .  0 1 ,  IO, 1. 0) .  IO, 0, 111: 
d o u b l e  myawC31C31 = (11. 0.  01 ,  IO, 1. 01, IO, 0. 111: 
p o i n t - t   v p n .   v r i g h t .   v u p :  
p o i n t - t   x a x i s  - 11. 0 .   0 ) :  
p o i n t - t   z a x i s  = (0,  0 .  1): 
c o n v e x o b j e c t - t   o b j e c t h e a d  = {NULL. t O . O . O j .  -999999.01; 

11 P r o j e c t   v i e w s p a c e   p o l y g o n   v e r t i c e s   i n t o   s c r e e n   c o o r d i n a t e s .  
I /  N o t e   t h a t   t h e  y ax is   goes   up  i n  wor ldspace  and  v iewspace.   bu t  
11 goes down i n  screenspace. 
vo id   P ro jec tPo lygon   (po l ygon- t   *ppo ly ,   po l ygon2D- t   *ppo ly2D)  

i n t  i: 
d o u b l e   z r e c i p :  

f o r   ( i - 0  : i < p p o l y - > n u m v e r t s  : i++) 
I 

z r e c i p  - 1.0  I p p o l y - > v e r t s [ i ] . v [ Z ] :  
p p o l y Z D - > v e r t s [ i  1 . x  - 
p p o l y Z D - > v e r t s [ i l . y  = DIBHeigh t  - 

p p o l y - > v e r t s ~ i I . v [ 0 1  * z r e c i p  * maxsca le  + x c e n t e r :  

( p p o l y - > v e r t s [ i l . v [ 1 1  * z r e c i p  * maxsca le  + y c e n t e r ) :  
I 
p p o l y 2 D - > c o l o r  - p p o l y - > c o l o r ;  
ppo ly2D->numver ts  - p p o l y - > n u m v e r t s :  

/ /  S o r t   t h e   o b j e c t s   a c c o r d i n g   t o  z d i s t a n c e   f r o m   v i e w p o i n t .  
v o i d   Z S o r t O b j e c t s ( v o i d )  
I 

i n t  
d o u b l e   v d i   s t :  
c o n v e x o b j e c t - t   * p o b j e c t ;  
p o i n t - t   d i s t :  

o b j e c t h e a d . p n e x t  - & o b j e c t h e a d :  
f o r   ( i - 0  : i < n u m o b j e c t s  : i++) 
t 

f o r   ( j - 0  : j < 3  : j++) 

o b j e c t s [ i ] . v d i s t  = s q r t ( d i s t . v C 0 1  * d i s t . v [ O l  + 
d i s t . v C 1 1  * d i s t . v C 1 1  + 
d i s t . v [ Z ]  * d i s t . v C 2 1 ) :  

i. j: 

d i s t . v [ j ]  = o b j e c t s C i l . c e n t e r . v [ j l  - c u r r e n t p o s . v [ j ] ;  

p o b j e c t  = & o b j e c t h e a d :  
v d i s t  - o b j e c t s [ i l . v d i s t ;  
I1 V i e w s p a c e - d i s t a n c e - s o r t   t h i s   o b j e c t   i n t o   t h e   o t h e r s .  
11 Guaranteed t o   t e r m i n a t e   b e c a u s e   o f   s e n t i n e l  
w h i l e   ( v d i s t  < p o b j e c t - > p n e x t - > v d i s t )  

p o b j e c t  = p o b j e c t - > p n e x t :  
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o b j e c t s [ i l . p n e x t  - p o b j e c t - > p n e x t :  
p o b j e c t - > p n e x t  - & o b j e c t s [ i l :  

1 
1 

/ /  Move t h e   v i e w   p o s i t i o n  and s e t   t h e   w o r l d - > v i e w   t r a n s f o r m .  
vo id   Upda teV iewPosO 
{ 

i n t  i; 
p o i n t - t   m o t i o n v e c ;  
d o u b l e  s .  c,  mtemplC31C31, mtempZC31C31: 

/ /  Move i n   t h e   v i e w   d i r e c t i o n ,   a c r o s s   t h e   x - y   p l a n e ,  as if 
I /  w a l k i n g .   T h i s   a p p r o a c h  moves s lower  when l o o k i n g  up or 
I /  down a t  more o f  an a n g l e  
mot ionvec.vC01 - D o t P r o d u c t ( & v p n .   & x a x i s ) :  
m o t i o n v e c . v [ l l  - 0.0: 
m o t i o n v e c . v [ Z l  - D o t P r o d u c t ( & v p n .   & z a x i s ) :  
f o r   ( i - 0  : i < 3  ; i++) 
{ 

c u r r e n t p o s . v [ i ]  +- m o t i o n v e c . v [ i l  * c u r r e n t s p e e d :  
i f  ( c u r r e n t p o s . v [ i l  > MAXKCOORD)  

c u r r e n t p o s . v C i 1  - MAX-COORD: 
i f  ( c u r r e n t p o s . v [ i l  < -MAX-COORD) 

c u r r e n t p o s . v C i 1  = -MAXLCOORD:  
1 
11 S e t   u p   t h e   w o r l d - t o - v i e w   r o t a t i o n .  
/ /  Note:  much o f   t h e   w o r k   d o n e   i n   c o n c a t e n a t i n g   t h e s e   m a t r i c e s  
/ /  c a n   b e   f a c t o r e d   o u t ,   s i n c e  i t  c o n t r i b u t e s   n o t h i n g   t o   t h e  
/ I  f i n a l   r e s u l t :   m u l t i p l y   t h e   t h r e e   m a t r i c e s   t o g e t h e r  on paper  
/ /  t o   g e n e r a t e  a m i n i m u m   e q u a t i o n   f o r   e a c h   o f   t h e  9 f i n a l   e l e m e n t s  
s - s i n ( r o l 1 ) :  
c - c o s ( r o l 1 ) :  
m r o l l [ O l [ O 1  - c :  
m r o l l [ 0 ] [ 1 1  - s ;  
m r o l l [ 1 1 C O l  = - s :  
m r o l l [ l l [ l l  - c ;  
s - s i n ( p i t c h 1 :  
c = c o s ( p i t c h 1 :  
m p i t c h C l l C l 1  - c :  
m p i t c h C l ] [ Z l  - s ;  
mpi tch [21 [11  - - s ;  
m p i t c h [ Z l [ Z l  - c :  
s - s i n ( y a w ) ;  
c - cos (yaw) ;  
myaw[Ol[Ol - c ;  
myaw[O1[21 - - s :  
myaw[Zl[O] - s :  
myawCEl[Zl - c :  
MConcat(mrol1.  myaw. mtemp l ) ;  
MConcat(mpitch.   mtempl,   mtempz);  
/ /  B r e a k   o u t   t h e   r o t a t i o n   m a t r i x   i n t o   v r i g h t .   v u p ,  and  vpn. 
/ /  We c o u l d   w o r k   d i r e c t l y   w i t h   t h e   m a t r i x :   b r e a k i n g  i t  o u t  
/ /  i n t o   t h r e e   v e c t o r s   i s   j u s t   t o  make t h i n g s   c l e a r e r  
f o r   ( i - 0  : i < 3  : i++) 
{ 

v r i g h t . v C i 1  - mtempZCOlCi1: 
v u p . v [ i l  - mtempZC11Cil: 
v p n . v [ i l  - mtempZC21Cil: 

1 
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/ /  S i m u l a t e   c r u d e   f r i c t i o n  
i f  ( c u r r e n t s p e e d  > (MOVEMENT-SPEED * speedsca le  I 2.0))  

e l s e  i f  ( c u r r e n t s p e e d  < -(MOVEMENT-SPEED * speedsca le  I 2.0)) 

e l s e  

c u r r e n t s p e e d  -- MOVEMENT-SPEED * speedsca le  I 2.0;  

c u r r e n t s p e e d  +- MOVEMENT-SPEED * speedscale / 2.0; 

c u r r e n t s p e e d  - 0.0: 
3 

/ /  R o t a t e  a v e c t o r   f r o m   v i e w s p a c e   t o   w o r l d s p a c e .  
v o i d  B a c k R o t a t e V e c t o r ( p o i n t - t  * p i n .   p o i n t - t   * p o u t )  
{ 

i n t  i: 

11 R o t a t e   i n t o   t h e   w o r l d   o r i e n t a t i o n  
f o r   ( i - 0  ; i < 3  : it+) 

p o u t - > v [ i l  - p i n - > v [ 0 1  * v r i g h t . v [ i l  + 
p i n - > v [ 1 1  * v u p . v [ i l  + 
p i n - > v [ 2 1  * v p n . v [ i ] :  

3 

/ I  Trans fo rm a p o i n t   f r o m   w o r l d s p a c e   t o   v i e w s p a c e .  
v o i d   T r a n s f o r m P o i n t ( p o i n t - t   * p i n ,   p o i n t - t   * p o u t )  
{ 

i n t  i: 
p o i   n t - t   t v e r t  : 

/ /  T r a n s l a t e   i n t o  a v i e w p o i n t - r e l a t i v e   c o o r d i n a t e  
f o r   ( i - 0  : i < 3  : i++) 

t v e r t . v [ i l  - p i n - > v [ i l  - c u r r e n t p o s . v [ i l :  
/ /  R o t a t e   i n t o   t h e   v i e w   o r i e n t a t i o n  
pout->v[O]  - D o t P r o d u c t ( & t v e r t .   & v r i g h t ) ;  
p o u t - > v [ I ]  - O o t P r o d u c t ( & t v e r t .   L v u p ) :  
p o u t - > v [ 2 ]  - D o t P r o d u c t ( & t v e r t .   b v p n ) ;  

1 

/ /  T rans fo rm a p o l y g o n   f r o m   w o r l d s p a c e   t o   v i e w s p a c e .  
v o i d  TransformPolygon(po1ygon-t * p i n p o l y ,   p o l y g o n - t   * p o u t p o l y )  
{ 

i n t  i: 

f o r  ( i - 0  : i < p i n p o l y - > n u m v e r t s  : i++) 

p o u t p o l y - > c o l o r  - p i n p o l y - > c o l o r ;  
p o u t p o l y - > n u m v e r t s  - p i n p o l y - > n u m v e r t s ;  

T r a n s f o r m P o i n t ( & p i n p o l y - > v e r t s [ i l .  L p o u t p o l y - > v e r t s ~ i l ) ;  

3 

/ I  R e t u r n s   t r u e  i f  p o l y g o n   f a c e s   t h e   v i e w p o i n t ,   a s s u m i n g  a c l o c k w i s e  
/ /  w i n d i n g   o f   v e r t i c e s  a s   s e e n   f r o m   t h e   f r o n t .  
i n t  PolyFacesViewer(po1ygon-t * p p o l y )  
I 

i n t  i: 
p o i n t - t   v i e w v e c ,  

f o r   ( i - 0  : i < 3  : 
{ 

v i e w v e c . v [ i l  
e d g e l . v C i 1  - 
edge2 .vE i l  - 

3 

edgel ,   edge2.   normal :  

i ++) 

- p p o ~ y - > v e r t s [ 0 l . v ~ i l  - c u r r e n t p o s . v [ i l :  
p p o l y - > v e r t s [ 0 ] . v C i l  - p p o l y - > v e r t s ~ l l . v ~ i l ;  
p p o l y - > v e r t s [ 2 ] . v [ i l  - p p o l y - > v e r t s ~ l l . v ~ i l ;  
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CrossProduct(&edgel.  &edge2. &normal): 
if (DotProduct(&viewvec.  &normal) > 0 )  

else 
return 1: 

return 0:  
1 

/ I  Set up  a clip  plane  with  the  specified  normal. 
void SetWorldspaceClipPlane(point-t *normal,  planect *plane) 
{ 

I /  Rotate  the  plane normal into  worldspace 
BackRotateVector(norma1.  &plane->normal); 
plane->distance - DotProduct(&currentpos. &plane->normal) + 

CLIP-PLANELEPSILON; 
1 

/ /  Set up the  planes  of  the  frustum,  in  worldspace  coordinates. 
void  SetUpFrustum(void) 
t 

double  angle, s, c; 
point-t normal ; 

angle - atan(2.0 I fieldofview * maxscale / xscreenscale); 
s - sin(ang1e): 
c - cos(ang1e): 
11 Left  clip  plane 
normal .v[O1 - s: 
normal.vC11 - 0:  
normal .v[21 - c; 
SetWorldspaceClipPlane(&normal. &frustumplanes[Ol): 
/ /  Right  clip  plane 
normal.v[Ol - - s :  
SetWorldspaceClipPlane(&normal. &frustumplanes[ll): 
angle - atan(2.0 I fieldofview * maxscale / yscreenscale); 
s - sin(ang1e); 
c - cos(ang1e); 
11 Bottom  clip  plane 
normal.v[Ol - 0;  
normal .v[11 - s ;  
normal.vC21 - c; 
SetWorldspaceClipPlane(&normal. &frustumplanes[2]); 
I /  Top  clip  plane 
normal.v[lI - - s ;  
SetWorldspaceClipPlane(&normal, &frustumplanes[31); 

1 

I /  Clip a  polygon  to  the  frustum. 
int ClipToFrustum(po1ygon-t  *pin,  polygon-t  *pout) 
t 

i nt i ,  curpoly; 
polygon-t tpolyC21.  *ppoly; 

curpoly - 0; 
ppoly - pin; 
for (i-0 : i< (NUM-FRUSTUM-PLANES- l ) ;  i++) 
t 

if (!ClipToPlane(ppoly. 
&frustumpl anes[i 3 ,  
&tpolyCcurpolyl) 1 

return 0; 
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p p o l y  = & t p o l y [ c u r p o l y l ;  
c u r p o l y  1; 

1 
r e t u r n   C l i p T o P l a n e ( p p o 1 y .  

&frustumplanes[NUMKFRUSTUM_PLANES-ll, 
p o u t )  : 

1 

11 R e n d e r   t h e   c u r r e n t   s t a t e   o f   t h e   w o r l d   t o   t h e   s c r e e n .  
v o i d   U p d a t e W o r l d O  
I 

HPALETTE h o l   d p a l  : 
HDC hdcScreen.   hdcOIBSect ion;  
HBITMAP h o l d b i t m a p :  
polygon2D-t  s c r e e n p o l y :  

c o n v e x o b j e c t - t  * p o b j e c t :  
i n t  i, j .  k: 

UpdateViewPosO;  
memset(pDIBBase, 0, OIBWid th*OIBHeigh t ) :  / /  c l e a r   f r a m e  
SetUpFrus tumO:  
Z S o r t O b j e c t s O :  
/ I  Draw a l l   v i s i b l e   f a c e s   i n   a l l   o b j e c t s  
p o b j e c t  = o b j e c t h e a d . p n e x t ;  
w h i l e   ( p o b j e c t  != & o b j e c t h e a d )  
t 

p p o l y  = p o b j e c t - > p p o l y :  
f o r   ( i - 0  ; i < p o b j e c t - > n u m p o l y s  ; i++) 
{ 

p o l Y g o n K t   * p p o l y .   t p o l y 0 .   t p o l y l .   t p o l y 2 :  

/ I  Move t h e   p o l y g o n   r e l a t i v e   t o   t h e   a b j e c t   c e n t e r  
t p o l y 0 . c o l o r  = p p o l y - > c o l o r :  
tpoly0.numvert .s - p p o l y - > n u m v e r t s :  
f o r  ( j = O  : j < t p o l y O . n u m v e r t s  : j++) 
t 

f o r  (k=O ; k<3 ; k++) 
t p o l y O . v e r t s [ j l . v [ k l  - p p o l y - > v e r t s [ j l . v [ k l  + 

I 
i f  (PalyFacesViewer(&tpalyO)) 
t 

p o b j e c t - > c e n t e r . v [ k l ;  

i f  ( C l i p T o F r u s t u m ( & t p o l y O .   & t p o l y l ) )  
I 

T r a n s f o r m P o l y g o n   ( & t p o l y l ,   & t p o l y 2 ) :  
P r o j e c t P o l y g o n   ( & t p o l y 2 .   & s c r e e n p o l y ) :  
F i l l P o l y g o n E D   ( & s c r e e n p o l y ) ;  

I 
1 
ppoly++: 

1 
p o b j e c t  - p o b j e c t - > p n e x t :  

> 
/ I  We've  drawn the   f rame:   copy  i t  t o   t h e   s c r e e n  
hdcScreen - GetDC(hwnd0utput) :  
h o l d p a l  - S e l e c t P a l e t t e ( h d c S c r e e n ,  hpalDIB.  FALSE): 
R e a l i z e P a l e t t e ( h d c S c r e e n ) :  
hdcDIBSect ion  = CreateCompat ib leDC(hdcScreen) ;  
h o l d b i t m a p  - SelectObject(hdc0IBSection. hOIBSect ion) :  
B i t B l t ( h d c S c r e e n .  0. 0. DIBWidth.   DIBHeight .   hdcDIBSect ion.  

0. 0,  S R C C O P Y ) :  
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SelectPalette(hdcScreen. holdpal. F A L S E ) :  
ReleaseDC(hwnd0utput.  hdckreen): 
SelectObject(hdcD1BSection. holdbitmap): 
ReleaseDC(hwnd0utput.  hdcDIBSection): 

I 

The Lessons of Listing 65.3 
There  are several interesting  points to Listing 65.3. First, floating-point  arithmetic is 
used throughout  the  clipping process. While it is possible to use fixed-point, doing 
so requires  considerable  care  regarding  range and precision. Floating-point is much 
easier-and,  with the  Pentium  generation of processors, is generally comparable  in 
speed.  In fact, for  some  operations, such as multiplication in  general and division 
when the floating-point unit is in single-precision mode,  floating-point is much faster. 
Check out Chris Hecker’s column  in  the February 1996 Game Deueloperfor an  inter- 
esting discussion along these lines. 
Second,  the planes that  form  the  frustum  are shifted ever so slightly  inward from 
their  proper positions at  the  edge of the field of  view. This  guarantees  that it’s  never 
possible  to generate a visible  vertex  exactly at  the eyepoint,  averting the divide-by-zero 
error  that such a vertex would  cause when projected and  at  no performance cost. 
Third,  the  orientation of the viewer  relative to the world is specified via  yaw, pitch, and 
roll  angles, successively applied in that order. These angles are accumulated from frame 
to frame according to user input,  and  for each frame are used to rotate  the view up, 
view right, and viewplane normal vectors,  which define  the world coordinate system, 
into  the viewspace coordinate system;  those transformed vectors in turn define  the 
rotation from worldspace  to  viewspace.  (See Chapter 61 for a discussion  of coordinate 
systems and  rotation,  and take a look at Chapters 5 and 6 of Complter Graphics, by  Foley 
and van  Dam, for  a  broader overview.) One attractive  aspect of accumulating angular 
rotations  that  are  then applied to the  coordinate system  vectors  is that  there is no 
deterioration of the rotation  matrix over  time.  This  is  in  contrast  to my XSharp package, 
in  which I accumulated rotations by keeping a cumulative  matrix of  all the  rotations 
ever performed; unfortunately, that  approach caused roundoff error to accumulate, 
so objects began to  warp  visibly after many rotations. 
Fourth, Listing 65.3 processes each input polygon into  a  clipped polygon, one line 
segment  at a time. It would  be more efficient to process all the vertices, categorizing 
whether and how they’re  clipped, and  then  perform a test such as the  Cohen- 
Sutherland  outcode test to detect trivial acceptance (the polygon  is entirely inside) 
and sometimes trivial rejection (the polygon  is  fully outside) without ever dealing 
with the edges, and to identify which planes actually need to be clipped against, as 
discussed  in  “Line-Segment Clipping Revisited,”Dr. DobbkJournaZ, January 1996. Some 
clipping  approaches also  minimize the number of intersection calculations when a 
segment is clipped by multiple planes. Further, Listing 65.3 clips a polygon against 
each  plane in turn,  generating  a new output polygon for  each  plane; it is possible 
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and can be more efficient to generate  the final, clipped polygon without any inter- 
mediate representations. For further reading on advanced clipping techniques, see 
the discussion starting on page 271 of  Foley and van  Dam. 
Finally, clipping in Listing 65.3 is performed in worldspace, rather  than in viewspace. 
The frustum is backtransformed from viewspace (where it is defined, since it exists 
relative  to the viewer)  to worldspace for this purpose. Worldspace clipping allows  us 
to transform only those vertices that  are visible, rather  than transforming all  vertices 
into viewspace, then  clipping  them. However, the decision  whether to clip  in 
worldspace or viewspace is not clear-cut and is affected by several factors. 

Advantages of Viewspace Clipping 
Although viewspace clipping requires transforming vertices that may not be drawn, it 
has potential performance advantages.  For example, in worldspace, near  and far clip 
planes are  just additional planes that have  to  be  tested and clipped to, using dot  prod- 
ucts. In viewspace, near  and  far clip planes are typically planes with constant z 
coordinates, so testing whether a vertex is near or far-clipped can be performed with a 
single z compare, and  the fractional distance along a line segment to a  near or far clip 
intersection can be calculated with a couple of z subtractions and  a divide; no  dot 
products are  needed. 
Similarly, if the field of view is  exactly  90 degrees, so the frustum planes go out at 45 
degree angles relative to the viewplane, then x==z and y==z along  the clip planes. 
This means that the clipping status of a vertex can be determined with a simple 
comparison,  far  more quickly than  the  standard  dot-product test. This lends itself 
particularly well to outcode-based clipping algorithms, since each compare can set 
one outcode bit. 
For a game, 90 degrees is a pretty good field of  view, but can we get the same sort of 
efficient clipping if we need some other field  of view? Sure. All  we  have to do is scale 
the x and y results of the world-to-view transformation to account for the field of  view, 
so that  the coordinates lie in a viewspace that’s normalized such that the frustum planes 
extend along lines of  x==z and y==z. The resulting visible projected points span the 
range -1 to 1 (before scaling up to get pixel coordinates),  just as  with a 90degree field 
of  view, so the rest  of the drawing  pipeline  remains unchanged. Better  yet, there is no cost 
in performance because the adjustment can  be added to the transformation matrix. 
I  didn’t  implement normalized clipping in Listing 65.3 because I wanted to illustrate 
the  general 3-D clipping mechanism without additional complications, and because 
for many applications the  dot  product (which, after all,  takes  only 10-20 cycles on  a 
Pentium) is sufficient. However, the  more frustum clipping you’re doing, especially 
if most of the polygons are trivially  visible, the  more attractive the performance ad- 
vantages  of normalized clipping become. 
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Further Reading 
You now  have the basics of 3-D clipping, but because fast clipping is central to high- 
performance 3-D, there’s a lot more to be learned. One good place for further  reading 
is  Foley and van Dam; another is Procedural  Elements of Computer  Graphics, by David F. 
Rogers.  Read and  understand  either of these books, and you’ll  know everything you 
need  for world-class clipping. 
And, as  you read, you might take a  moment to consider how wonderful it is that 
anyone who’s interested can tap into so much  expert knowledge for  the  price of a 
book-or, on  the  Internet,  for free-with no strings attached. Our  part of the world 
is a pretty good place right now, isn’t it? 
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