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but  not very often. 
When I turned 16 her  had  an aging, three-cylinder Saab-not one of the 

e late  OS, but a blunt-nosed, ungainly little wagon 
sardine-like comfort, with two of them perched  on 

as the car I learned to drive on,  and  the  one I took whenever I 
mother  didn’t  need it. 
, was a Volvo sedan, only a  couple of  years old and 

easily the classiest carfny family had ever owned. To the best of my recollection, as  of 
New  Year’s  of  my senior year, I had never driven that car.  However, I was going to a 
New  Year’s  party-in fact, I was going to chauffeur four  other people-and for rea- 
sons lost in the mists  of time, I was allowed  to  take the Volvo. So, one crystal  clear, 
stunningly cold night, I picked up my passengers, who included Robin Viola,  Kathy 
Smith, Jude Hawron ... and Alan,  whose  last name I’ll omit in case he wants to run for 
president someday. 
The party was at Craig Alexander’s house, way out in the middle of nowhere,  and it 
was a  good one. I heard Al Green  for  the first time, much beer was consumed (none 
by me, though),  and  around 2 a.m., we decided it was time to head  home. So we 
piled into  the Volvo, cranked  the  heat up to the max, and set  off. 
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We had  gone  about five miles when I sensed Alan was t y n g  to  tell me something. As 
I turned toward him, he said, quite expressively, “BLEARGH!” and deposited  a  con- 
siderable volume of  what had  until recently been  beer  and chips into his lap. 
Mind you, this wasn’t just any car Alan was tossing  his cookies in-it  was  my father’s 
prized Volvo. My reactions were up to the task; without a moment’s hesitation, I 
shouted, “Do it out  the window! Open  the window!”  Alan  obligingly rolled the win- 
dow  down and, with  flawless aim, sent some more erstwhile beer  and chips on its way. 
And it was here  that I learned  that fast decisions are  not necessarily good decisions. 
A second after the liquid flew out  the window, there was a  loud smacking sound,  and 
a yelp from Robin, as the  sodden mass hit  the slipstream and splattered  along  the 
length of the car. At that point,  I  did what I  should have done in the first place; I 
stopped  the car so Alan could  get out  and finish being sick in peace, while I assessed 
the full dimensions of the disaster. Not only was the  rear half of the car on  the pas- 
senger side-including Robin’s window, accounting  for  the yelp-covered,  but  the 
noxious substance had frozen solid. It looked like someone  had  melted an enor- 
mous candle, or possibly put cake frosting on  the car. 
The next  morning, my father was remarkably good-natured  about  the whole thing, 
considering, although I don’t  remember ever actually driving the Volvo again. My 
penance consisted of cleaning the car, no small punishment  considering  that I had 
to take a  hair dryer out to our  unheated garage and melt and clean the  gunk  one 
small piece at a time. 
One thing I learned  from this debacle is to pull over very,  very quickly if anyone 
shows signed of being ill, a bit of  wisdom that has proven useful a suprising number 
of times over the years. More important,  though, is the lesson that  it almost always 
pays to take at least a few seconds to size up a crisis situation and choose an effective 
response, and that’s served me well more times than I can count. 
There’s  a surprisingly close analog to this in programming.  Often, when faced with a 
problem  in his or  her code,  a  programmer’s response is to come up with a solution 
as  quickly  as  possible and immediately hack it  in. For all but  the simplest problems, 
though,  there  are side effects and design issues  involved that  should be thought 
through  before any coding is done. I try to think of bugs and  other problem situa- 
tions as opportunities to reexamine how  my code works,  as  well  as chances to detect 
and correct  structural defects I  hadn’t previously suspected; in  fact,  I’m  often able to 
simplify code as I fix a bug, thanks to the  understanding I gain in the process. 
Taking that  a  step  farther, it’s useful to reexamine assumptions periodically even if 
no bugs are involved. You might be surprised at how  quickly assumptions that  once 
were completely valid can deteriorate. 
For example, consider floating-point math. 

1 166 Chapter 63 



Not Your  Father’s  Floating-point 
Until last  year, I  had never done any serious floating-point (FP) optimization, for  the 
perfectly good reason that FP math  had never been fast enough  for any  of the code 
I  needed to  write. It was an article of faith that FP, while undeniably convenient, 
because of its automatic support  for  constant precision over an  enormous  range of 
magnitudes, was just  not fast enough  for real-time programming, so I, like pretty 
much everyone else doing 3-D, expended a lot of time and effort in making fixed- 
point  do  the  job. 
That article of faith was true up  through  the 486, but all the old assumptions are  out 
the window on  the Pentium,  for  three reasons: faster FP instructions, a  pipelined 
floating-point unit (FPU) , and  the magic  of a parallel FXCH.  Taken together, these 
mean  that FP addition  and subtraction are nearly  as  fast  as integer  operations, and 
FP multiplication and division  have the  potential to be much faster-all  with the 
range and precision advantages of FP. Better yet, the FPU has its own set of eight 
registers, so the use of floating-point can help relieve pressure on  the x86’s integer 
registers, as  well. 
One effect of  all this is that with the  Pentium, floating-point on  the x86 has gone 
from  being irrelevant to real-time 3-D to being a key element. Quake uses FP all the 
way down into  the  inner  loop of the  span rasterizer, performing several FP opera- 
tions every 16 pixels. 
Floating-point has not only become important  for real-time 3-D on  the PC, but will 
soon become even more crucial. Hardware accelerators will take care of texture 
mapping and will increase feasible scene complexity, meaning  the CPU  will do less 
bit-twiddling and will have far more vertices to transform and project, and far more 
motion physics and line-of-sight calculations and  the like  as  well. 
By way of getting you started with floating-point for real-time 3-D, in this chapter I’ll 
examine the basics  of Pentium FP optimization, then look at how some key math- 
ematical  techniques  for 3-D-dot product, cross product,  transformation,  and 
projection-can be accelerated. 

Pentium  Floating-Point Optimization 
I’m going  to  assume  you’re  already  familiar  with  x86 FP code in general; for additional 
information, check out Intel’s Pentiurn Processor User’s Munuul (order #241430-001; 
1-800-548-4725), a book that you should have if you’re doing  Pentium  programming 
of any sort. I’d also recommend taking a look around http://www.intel.com. 
I’m going to focus on six core  instructions in this section: FLD,  FST, FADD, FSUB, 
FMUL, and FDIV. First,  let’s look at cycle times for these instructions. FLD takes 1 
cycle; the value  is pushed onto  the FP stack and ready for use on  the  next cycle.  FST 
takes 2 cycles, although when storing to  memory, there’s a  potential  extra cycle that 
can be lost, as  I’ll describe shortly. 
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FDIV is a painfully slow instruction, taking 39 cycles at full precision and 33 cycles at 
double precision, which is the default precision for Visual Ct+ 2.0. While FDIV ex- 
ecutes, the FPU  is occupied, and can’t process subsequent FP instructions  until FDIV 
finishes. However, during  the cycles  while FDIV  is executing (with the  exception of 
the  one cycle during which FDIV starts),  the  integer  unit can simultaneously execute 
instructions other  than IMUL.  (IMUL  uses the FPU, and can only overlap with  FDIV 
for  a few cycles.) Since the  integer  unit can execute two instructions per cycle, this 
means it’s  possible to have three instructions, an FDIV and two integer instructions, 
executing at  the same time. That’s exactly  what happens,  for  example,  during the 
second cycle  of this code: 

F D I V   S T ( O ) . S T ( l )  
ADD  EAX.ECX 
I N C  EDX 

There’s an  important limitation, though; if the instruction stream following the FDIV 
reaches  a FP instruction (or  an IMUL),  then  that  instruction and all subsequent 
instructions, both  integer and FP, must wait  to execute  until FDIV has finished. 
When a FADD,  FSUB, or FMUL instruction is executed,  it is 3 cycles before  the result 
can  be  used by another instruction. (There’s an exception: If the instruction that at- 
tempts to use the result is an FST to memory, there’s  an  extra cycle  lost, so it’s 4 cycles 
from  the  start of an arithmetic  instruction  until  an FST of that value can begin, so 

FMUL ST(O),ST(l) 
F S T  [ temp]  

takes 6 cycles in all.) Again, it’s  possible to execute integer-unit instructions  during 
the 2 (or 3, for FST)  cycles after one of these FP instructions starts. There’s  a  more 
exciting possibility here,  though: Given properly structured  code,  the FPU is capable 
of averaging 1 cycle per FADD,  FSUB, or FMUL. The secret is pipelining. 

Pipelining, Latency, and Throughput 
The Pentium’s FPU is the first pipelined x86  FPU. Pipehingmeans  that  the FPU is 
capable of starting an instruction every  cycle, and can simultaneously handle several 
instructions in various stages  of completion. Only certain x86 FP instructions allow 
another instruction to start on the  next cycle, though: FADD,  FSUB, and FMUL are 
pipelined, but FST and FDIV are  not. (FLD executes in a single cycle, so pipelining 
is not  an issue.) Thus, in the  code  sequence 

FADD, 
FSUB 
FADD, 
FMUL 

FADD, can start on cycle N, FSUB can start on cycle N+1, FADD, can start on cycle 
N+2, and FMUL can start on cycle N+3. At the start of  cycle N+3, the result of  FADD, 
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is  available in the  destination  operand, because it’s been 3 cycles since the instruc- 
tion started; FSUB  is starting the final cycle  of calculation; FADD,  is starting its second 
cycle,  with one cycle  yet to go after this; and FMUL is about to be issued. Each of the 
instructions takes 3 cycles to produce  a result from  the time it starts, but because 
they’re simultaneously processed at  different pipeline stages, one instruction is  is- 
sued  and  one  instruction  completes every cycle. Thus,  the  latency of these 
instructions-that is, the time until  the result is  available-is 3 cycles, but  the  through- 
put-the rate at which the FPU can start new instructions-is 1 cycle. An exception 
is that  the FPU is capable of starting an FMUL only  every 2 cycles, so between these 
two instructions 

FMUL S T ( l ) . S T ( O )  
F M U L   S T ( E ) . S T ( O )  

there’s  a l-cycle  stall, and  the following three instructions execute just as  fast  as the 
above pair: 

FMUL ST(l),ST(O) 
F L D   S T ( 4 )  
FMUL ST(O).ST(l) 

There’s  a caveat here, though: A FP instruction can’t be issued until its operands  are 
available. The FPU can reach  a  throughput of 1 cycle per  instruction on this code 

FADD ST(l).ST(O) 
F L D  [temp] 
FSUB ST(l).ST(O) 

because neither  the FLD nor  the FSUB needs  the result from  the FADD. Consider, 
however 

FADD S T ( O ) . S T ( 2 )  
FSUB ST(O).ST(l) 

where the  ST(0)  operand to FSUB  is calculated by  FADD. Here, FSUB can’t start 
until FADD has completed, so there  are 2 stall  cycles between the two instructions. 
When dependencies like this occur, the FPU runs  at latency rather  than  throughput 
speeds, and performance can drop by as much as  two-thirds. 

FXCH 
One piece of the puzzle is still  missing.  Clearly, to get maximum throughput, we 
need to interleave FP instructions, such that at any one time ideally three instruc- 
tions are in the pipeline at once.  Further, these instructions must not  depend  on  one 
another for  operands. But ST(0) must always be one of the  operands; worse, FLD 
can only push into  ST(0) , and FST can only store  from ST(0). How, then, can we 
keep  three  independent instructions going? 
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The easy  answer  would be for  Intel  to  change  the FP registers from  a stack to  a  set of 
independent registers. Since they couldn’t do that,  thanks  to compatibility issues, 
they did  the  next best thing: They made  the FXCH instruction, which swaps ST(0) 
and any other FP register, virtually free.  In  general, if FXCH  is both  preceded  and 
followed by  FP instructions,  then  it takes no cycles to  execute.  (Application  Note 500, 
“Optimizations  for  Intel’s 32-bit Processors,” February 1994, available from http:// 
www.intel.com, describes all the  conditions under which FXCH  is free.)  This allows 
you to move the  target of a  pending  operation  from  ST(0)  to  another register, at  the 
same time bringing another register  into ST(0) where  it  can be used, all at  no cost. 
So, for  example, we can start  three  multiplications,  then use  FXCH  to  swap back to 
start  adding  the results of the first two multiplications,  without  incurring any  stalls, 
as  shown in Listing 63.1. 

LISTING  63.1  163- 1 .ASM 
: u s e   o f   f x c h   t o   a l l o w   a d d i t i o n  o f  f i r s t   t w o :   p r o d u c t s   t o   s t a r t   w h i l e   t h i r d  
: m u l t i p l i c a t i o n   f i n i s h e s  

f l d  [ v e c 0 + 0 ]   ; s t a r t s  & ends on c y c l e  0 
fmu l   [ vec l+O l  
f 1  d [ vec0+4] 

; s t a r t s  on c y c l e  1 
; s t a r t s  & ends on c y c l e  2 

fmu l   [ vec l+41 
f l d  [vecO+dl 

: s t a r t s  on c y c l e  3 

fmu l   [ vec l+81 
: s t a r t s  & ends  on c y c l e  4 
; s t a r t s  on c y c l e  5 

f x c h   s t ( 1 )  : n o   c o s t  
f a d d p   s t ( 2 ) . s t ( O )   : s t a r t s  on c y c l e  6 

The Dot Product 
Now we’re ready to look at fast FP for  common 3-D operations; we’ll start by looking 
at how to speed up the  dot  product. As discussed in  Chapter 30, the  dot  product is 
heavily used in 3-D to calculate cosines and to project  points  along vectors. The  dot 
product is calculated as d = ulvl + u2v2 + usv3;  with three  loads,  three multiplies, two 
adds, and  a store,  the  theoretical  minimum time for  this  calculation is 10 cycles. 
Listing  63.2  shows a  straightforward dot  product  implementation.  This version  loses 
7 cycles  to  stalls.  Listing  63.3 cuts the loss to 5 cycles  by doing all three FMULs first, 
then using FXCH to  set  the  third FXCH aside to  complete while the results of the 
first two FMULs, which  have completed,  are  added. Listing  43.3  still  loses 50 percent 
to stalls, but unless some other code is available to  be  interleaved with the dot prod- 
uct  code,  that’s all we can do to speed  things up. Fortunately, dot products  are  often 
used  in  contexts where there’s plenty of interleaving  potential, as  we’ll see when we 
discuss transformation. 

LISTING  63.2  1163-2.ASM 
; u n o p t i m i z e d   d o t   p r o d u c t ;  17 c y c l e s  

f l d  [vec0+0] : s t a r t s  & ends on c y c l e  0 
fmu l   [ vec l+Ol  ; s t a r t s  on c y c l e  1 
f l d  [vec0+41 : s t a r t s  & ends on c y c l e  2 
fmu l   [ vec l+41 ; s t a r t s  on c y c l e  3 
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f l d  [vecO+81 
fmul  [ vec l+8 ]  

f addp  s t ( l ) . s t ( O )  

faddp  s t ( l ) . s t ( O )  

s t a r t s  & ends on c y c l e  4 
s t a r t s  on c y c l e  5 
s t a l l s   f o r   c y c l e s   6 - 7  
s t a r t s  on c y c l e  8 
s t a l l s   f o r   c y c l e s   9 - 1 0  
s t a r t s  on c y c l e  11 
s t a l l s   f o r   c y c l e s   1 2 - 1 4  

f s t p   C d o t l   : s t a r t s  on c y c l e   1 5 .  
: ends on c y c l e   1 6  

LISTING 63.3 L63-3.ASM 
: o p t i m i z e d   d o t   p r o d u c t :   1 5   c y c l e s  

f l d  [vec0+01 : s t a r t s  & ends   on   cyc le  0 
fmu l   [ vec l+Ol  : s t a r t s  on c y c l e  1 
f l d  [vec0+41 : s t a r t s  & ends   on   cyc le  2 
fmu l   [ vec l+41 : s t a r t s  on c y c l e  3 
f l d  [vec0+8] ; s t a r t s  & ends on c y c l e  4 
fmu l   [ vec l+81 ; s t a r t s  on c y c l e  5 
f x c h   s t ( 1 )  ;no c o s t  
f a d d p   s t ( Z ) . s t ( O )  ; s t a r t s  on c y c l e  6 

f a d d p   s t ( l ) . s t ( O )   ; s t a r t s  on c y c l e  9 

f s t p   [ d o t ]   : s t a r t s  on c y c l e   1 3 .  

: s t a l l s   f o r   c y c l e s   7 - 8  

: s t a l l s   f o r   c y c l e s   1 0 - 1 2  

: ends  on   cyc le   14  

The Cross Product 
When  last  we looked at  the  cross  product,  we found that  it’s  handy  for  generating  a 
vector  that’s  normal  to two other  vectors. The cross  product  is  calculated as  [u2v3;u3v2 
u3vl-u1vs ulv2-u2vl]. The theoretical  minimum  cycle count for  the  cross  product 1s 21 
cycles.  Listing 63.4 shows a  straightfornard  implementation  that  calculates  each  com- 
ponent of the  result  separately,  losing 15 cycles  to  stalls. 

LISTING 63.4  L63-4.ASM 
; u n o p t i m i z e d   c r o s s   p r o d u c t :  36 c y c l e s  

f l d  [vec0+41 : s t a r t s  & ends  on c y c l e  0 
fmu l   [ vec l+8 ]  : s t a r t s  on c y c l e  1 
f l d  [vec0+8] : s t a r t s  & ends   on   cyc le  2 
fmul  [vec1+4] ; s t a r t s  on c y c l e  3 

f s u b r p   s t ( l ) . s t ( O )   ; s t a r t s  on c y c l e  6 

f s t p   [ v e c 2 + 0 ]   : s t a r t s  on c y c l e   1 0 .  

f l d  [vecO+8] : s t a r t s  & ends on c y c l e   1 2  
fmul  [vecl+O] : s t a r t s  on c y c l e   1 3  
f l d  [vec0+0] : s t a r t s  & ends   on   cyc le   14  
fmu l   [ vec l+8 ]  ; s t a r t s  on c y c l e   1 5  

f s u b r p   s t ( l ) . s t ( O )   ; s t a r t s  on c y c l e   1 8  

f s t p  [ v e c 2 + 4 1   ; s t a r t s  on c y c l e   2 2 .  

: s t a l l s   f o r   c y c l e s   4 - 5  

: s t a l l s   f o r   c y c l e s   7 - 9  

: ends on c y c l e  11 

; s t a l l s   f o r   c y c l e s   1 6 - 1 7  

: s t a l l s   f o r   c y c l e s   1 9 - 2 1  

: ends on c y c l e  23 
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f l d  Cvec0+01 : s t a r t s  & ends   on   cyc le   24  
fmul  [vec1+4] : s t a r t s   o n   c y c l e  25 
f l d  [vec0+4] : s t a r t s  & ends on c y c l e   2 6  
fmul   [vec l+O]  : s t a r t s   o n   c y c l e  27 

f s u b r p   s t ( l ) . s t ( O )   : s t a r t s   o n   c y c l e   3 0  

f s t p  Cvec2+8] : s t a r t s  on c y c l e   3 4 .  

: s t a l l s   f o r   c y c l e s   2 8 - 2 9  

: s t a l l s   f o r   c y c l e s   3 1 - 3 3  

: ends  on   cyc le   35  

We couldn’t  get rid of  many  of the stalls in  the  dot  product  code because with  six 
inputs  and  one  output,  it was impossible to interleave all the operations. However, 
the cross product, with three outputs, is much  more  amenable to optimization. In 
fact, three is the magic number; because we have three calculation streams and  the 
latency of FADD,  FSUB, and FMUL is 3 cycles, we can eliminate almost every single 
stall in the cross-product calculation, as  shown in Listing 63.5. Listing 63.5 loses  only 
one cycle to a stall, the cycle before the first FST; the relevant FSUB has just finished 
on  the preceding cycle, so we run  into  the extra cycle of latency associated with FST. 
Listing 63.5 is more  than 60 percent faster than Listing 63.4, a striking illustration of 
the power of properly managing the Pentium’s FP pipeline. 

LISTING 63.5 L63-5.ASM 
: o p t i m i z e d   c r o s s   p r o d u c t :   2 2   c y c l e s  

f l d  Cvec0+41 : s t a r t s  & ends   on   cyc le  0 
fmu l  
f l d  

Cvec1+8] : s t a r t s  on c y c l e  1 
Cvec0+8] : s t a r t s  & ends   on   cyc le  2 

fmu l  
f l  d 

C v e c l + O l   : s t a r t s  on c y c l e  3 
Cvec0+01 : s t a r t s  & ends on c y c l e  4 

fmu l  
f l d  

C v e c l + 4 1   : s t a r t s  on c y c l e  5 
Cvec0+81 : s t a r t s  & ends on c y c l e  6 

fmu l  
f l d  

Cvec1+41 : s t a r t s  on c y c l e  7 
Cvec0+01 : s t a r t s  & ends on c y c l e  8 

fmu l  
f l d  

C v e c l + 8 I   : s t a r t s  on c y c l e  9 
Cvec0+41 : s t a r t s  & ends on c y c l e   1 0  

fmu l   [ vec l+Ol  : s t a r t s  on c y c l e  11 
f x c h   s t ( 2 )  : no   cos t  
f s u b r p   s t ( 5 ) . s t ( O )  : s t a r t s  on c y c l e   1 2  
f s u b r p   s t ( 3 ) . s t ( O )  : s t a r t s  on c y c l e   1 3  
f s u b r p   s t ( l ) . s t ( O )  : s t a r t s  on c y c l e   1 4  
f x c h   s t ( 2 )  : n o   c o s t  

: s t a l l s   f o r   c y c l e   1 5  

: ends on c y c l e   1 7  

: ends   on   cyc le   19  

: ends on c y c l e   2 1  

f s t p  [vecE+O] : s t a r t s  on c y c l e   1 6 .  

f s t p  Cvec2+41 : s t a r t s  on c y c l e   1 8 .  

f s t p  [vec2+81 : s t a r t s  on c y c l e   2 0 .  

Transformation 
Transforming a  point,  for example from worldspace to viewspace, is one of the most 
heavily used FP operations  in realtime 3-D. Conceptually, transformation is nothing 
more  than  three dot products and  three  additions, as I will discuss in Chapter 61. 
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(Note  that  I'm talking about  a subset of a  general 4x4 transformation matrix, where 
the  fourth row is always implicitly [0 0 0 11. This limited form suffices for common 
transformations, and does 25 percent less  work than  a full 4x4 transformation.) 
Transformation is calculated as: 

m31 m32 m33 m34 
0 0 0 1 1  

-I 

" 

U1 

U, 

u3 
1 
" 

'1 = mllul + m12u2 + m13u3 + m14 

'2 = m21u1 + m22u2 + m23u3 + m24 

'3 = m31u1 + m32u2 + m33u3 + m34. 

When it comes to implementation, however, transformation is quite  different  from 
three  separate dot products and additions, because once again the magic number 
three is  involved. Three separate dot products and additions would take 60 cycles if 
each were calculated using the  unoptimized  dot-product  code of Listing 63.2, and 
would  take 54 cycles  if done  one after the  other using the faster dot-product  code of 
Listing 63.3, in each case  followed by the a final addition per  dot  product. 
When fully interleaved, however,  only a single cycle is lost (again to the extra cycle  of 
FST latency), and  the cycle count  drops to 34, as  shown in Listing 63.6. This means 
that on a 100 MHz Pentium, it's theoretically possible  to do nearly 3,000,000 trans- 
forms per second,  although that's a purely hypothetical number, due to cache effects 
and set-up costs.  Still, more  than 1,000,000 transforms per second is certainly fea- 
sible; at a  frame  rate of 30 Hz, that's an impressive  30,000 transforms per frame. 

LISTING  63.6  163-6.ASM 
: o p t i m i z e d   t r a n s f o r m a t i o n :   3 4   c y c l e s  

f l d  [vecO+01 
fmu l  [ m a t r i x + O l  
f l d  [vec0+01 
fmu l  [ m a t r i x + l 6 1  
f l d  Cvec0+0] 
fmul  [mat r i x+321 
f l d  [vec0+41 
fmu l  [ m a t r i x + 4 1  
f l d  [vec0+41 
fmu l  [mat r i x+20]  
f l d  [vec0+43 
fmu l  [mat r i x+361 
f x c h  s t ( 2 )  
f a d d p  s t ( 5 ) , s t ( O )  
faddp s t ( 3 ) , s t ( O )  
faddp s t ( l ) , s t ( O )  
f l d  [vecO+81 

: s t a r t s  & ends on c y c l e  0 
; s t a r t s  on c y c l e  1 
; s t a r t s  & ends on c y c l e  2 
: s t a r t s  on c y c l e  3 
: s t a r t s  & ends   on   cyc le  4 
; s t a r t s  on c y c l e  5 
: s t a r t s  & ends on c y c l e  6 
: s t a r t s  on c y c l e  7 
; s t a r t s  & ends  on c y c l e  8 
: s t a r t s  on c y c l e  9 
; s t a r t s  & ends   on   cyc le   10  
: s t a r t s  on c y c l e  11 
:no c o s t  
: s t a r t s   o n   c y c l e   1 2  
; s t a r t s  on c y c l e   1 3  
: s t a r t s  on c y c l e   1 4  
: s t a r t s  & ends on c y c l e  15  
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fmul 
fl d 
fmul 
fld 
fmul 
fxch 
faddp 
faddp 
faddp 
fxch 
f add 
fxch 
fadd 
fxch 
fadd 
fxch 
fstp 

fstp 

fstp 

[rnatrix+E] 
[vecO+El 
[matrix+241 
[vecO+81 
[matrix+40] 
st(2) 
st(5),st(O) 
st(3).st(O) 
st(l).st(O) 
st(2) 
[matrix+lEl 
st(1) 
[matrix+28] 
st(2) 
[matrix+441 
st(1) 
[vecl+Ol 

[vecl+81 

[vecl+41 

;starts on cycle 16 
;starts & ends on cycle 17 
:starts  on  cycle 18 
;starts & ends on cycle 19 
;starts on cycle 20 
:no cost 
:starts  on  cycle  21 
;starts on cycle 22 
;starts on cycle  23 
;no cost 
;starts on cycle 24 
;starts on cycle  25 
;starts on cycle  26 
;no  cost 
:starts  on  cycle 27 
:no cost 
;starts on cycle 28, 
; ends  on  cycle  29 
;starts on cycle 30. 
: ends on cycle 31 
;starts on cycle 32, 
; ends  on  cycle 33 

Projection 
The final optimization we’ll look at is projection  to  screenspace.  Projection itself is 
basically nothing  more  than  a divide (to  get l / z ) ,  followed by two multiplies (to  get 
x/z and y/z), so there wouldn’t seem to  be  much  in  the way  of  FP optimization 
possibilities there. However, remember  that  although FDIV has a latency of up to 39 
cycles, it can overlap with integer  instructions  for all but  one of those cycles. That 
means  that if  we can  find  enough independent  integer work to do before we need 
the l / z  result, we can effectively reduce  the cost of the FDIV to one cycle. Projection 
by itself doesn’t  offer  much with  which to overlap, but  other work such as clamping, 
window-relative adjustments, or 2-D clipping  could  be  interleaved with the FDIV for 
the  next  point. 
Another  dramatic  speed-up is possible by setting  the  precision of the FPU down to 
single precision via  FLDCW, thereby  cutting  the time FDIV takes to  a  mere 19 cycles. 
I don’t have the space to discuss reduced  precision  in  detail  in this book,  but  be 
aware that  along with potentially  greater  performance,  it  carries  certain risks,  as  well. 
The  reduced  precision, which  affects FADD,  FSUB,  FMUL,  FDIV, and FSQRT, can 
cause subtle  differences  from  the  results you’d get using compiler  defaults. If  you 
use reduced  precision, you should be on the  alert  for  precision-related  problems, 
such as clipped values that vary more  than  you’d  expect  from  the precise clip point, 
or  the  need for using larger  epsilons  in  comparisons  for  point-on-plane tests. 

Rounding Control 
Another useful area  that I can  note only in passing here is that of leaving the FPU in 
a  particular  rounding  mode while performing bulk operations of some sort. For 
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example, conversion to int via the FIST instruction  requires  that  the FPU be in chop 
mode. Unfortunately, the FLDCW instruction must be used to get  the FPU into  and 
out of chop  mode,  and  each FLDCW takes 7 cycles, meaning  that compilers often 
take at least 14 cycles for each float->int conversion. In assembly,  you can just set the 
rounding state (or, likewise, the precision, for faster FDIVs) once  at  the start of the 
loop, and save all those FLDCW  cycles each time through  the  loop. This is even 
more  true  for ceil(), which  many compilers implement as horrendously inefficient 
subroutines, even though  there  are  rounding modes for both ceil() and floor(). Again, 
though, be aware that results of  FP calculations will be  subtly different  from com- 
piler default behavior while chop, ceil, or floor  mode is in effect. 
A final note:  There  are some speed-ups to be had by manipulating FP variables  with 
integer instructions. Check out Chris Hecker’s column in the February/March 1996 
issue  of Game Developer for details. 

A Farewell to 3-D Fixed-point 
As with  most optimizations, there  are  both benefits and hazards to floating-point 
acceleration, especially pedal-to-the-metal optimizations such as the last few  I’ve 
mentioned. Nonetheless, I’ve found floating-point to be generally both  more  robust 
and easier to  use than fixed-point even  with those maximum optimizations. Now 
that floating-point is fast enough  for real time, I  don’t expect to be doing  a whole lot 
of fixed-point 3-D math  from  here  on  out. 
And I won’t miss it a bit. 
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