
chapter 60

compiling bsp trees

P
?:
3 %$~

ees from Concept to Reality
,i""

As long-time readkrs of my columns know, I tend to move my family around the
country quite a bit. &bange doesn't come out of the blue, so there's some interesting
history to every move roots of the latest move go back even farther than
usual. To wit:

om Pennsylvania to California, I started writing a
I was paid peanuts for writing it, and I doubt if even
t issues the columns appeared in, but I had a lot of

By 1991, we were inVermont, and I was writing the OraphicsPro~ummingcolumn for
Dr. Dobb's Journal (a& having a great time doing it, even though it took all my spare
nights and weekends $0 stay ahead of the deadlines). In those days I received a lot of
unsolicited evaluation software, including a PC shareware game called Commander
Keen, a side-scrolling game that was every bit as good as the hot Nintendo games of
the day. I loved the way the game looked, and actually drafted a column opening
about how for years I'd been claiming that the PC could be a great game machine in
the hands of great programmers, and here, finally, was the proof, in the form of
Commander Keen. In the end, though, I decided that would be too close to a prod-
uct review, an area that I've observed inflames passions in nonconstructive ways, so I
went with a different opening.

"graphics for the EGA and VGA.

1117

In 1992, I did a series of columns about my X-Sharp 3-D library, and hung out on
DDJs bulletin board. There was another guy who hung out there who knew a lot
about 3-D, a fellow named John Carmack who was surely the only game programmer
I’d ever heard of who developed under NEXTSTEP. When we moved to Redmond, I
didn’t have time for BBSs anymore, though.
In early 1993, I hired Chris Hecker. Later that year, Chris showed me an alpha copy
of DOOM, and I nearly fell out of my chair. About a year later, Chris forwarded me a
newsgroup post about NEXTSTEP, and said, “Isn’t this the guy you used to know on
the DDJ bulletin board?” Indeed it was John Carmack; what’s more, it turned out
that John was the guy who had written DOOM. I sent him a congratulatory piece of
mail, and he sent back some thoughts about what he was working on, and some-
where in there I asked if he ever came up my way. It turned out he had family in
Seattle, so he stopped in and visited, and we had a great time.
Over the next year, we exchanged some fascinating mail, and I became steadily more
impressed with John’s company, id Software. Eventually, John asked if I’d be inter-
ested in joining id, and after a good bit of consideration I couldn’t think of anything
else that would be as much fun or teach me as much. The upshot is that here we all
are in Dallas, our fourth move of 2,000 miles or more since I’ve starting writing in
the computer field, and now I’m writing some seriously cool 3-D software.
Now that I’m here, it’s an eye-opener to look back and see how events fit together
over the last decade. You see, when John started doing PC game programming he
learned fast graphics programming from those early Programmer’s Journal articles of
mine. The copy of Commander Keen that validated my faith in the PC as a game
machine was the fruit of those articles, for that was an id game (although I didn’t
know that then). When John was hanging out on the DDJBBS, he had just done
Castle Wolfenstein 3-D, the first great indoor 3-D game, and was thinking about how
to do DOOM. (If only I’d known that then!) And had I not hired Chris, or had he
not somehow remembered me talking about that guy who used NEXTSTEP, I’d never
have gotten back in touch with John, and things would surely be different. (At the
very least, I wouldn’t be hearing jokes about how my daughter’s going to grow up
saying “y’all”.)
I think there’s a worthwhile lesson to be learned from all this, a lesson that I’ve
seen hold true for many other people, as well. If you do what you love, and do it as
well as you can, good things will eventually come of it. Not necessarily quickly or
easily, but if you stick with it, they will come. There are threads that run through
our lives, and by the time we’ve been adults for a while, practically everything that
happens has roots that run far back in time. The implication should be clear: If
you want good things to happen in your future, stretch yourself and put in the
extra effort now at whatever you care passionately about, so those roots will have
plenty to work with down the road.

1 1 18 Chapter 60

All this
John is
around

is surprisingly
the fellow who
them. He also

closely related to this chapter’s topic, BSP trees, because
brought BSP trees into the spotlight by building DOOM
got me started with BSP trees by explaining how DOOM

worked and getting me interested enough to want to experiment; the BSP com-
piler in this article is the direct result. Finally, John has been an invaluable help
to me as I’ve learned about BSP trees, as will become evident when we discuss
BSP optimization.
Onward to compiling BSP trees.

Compiling BSP Trees
As you’ll recall from the previous chapter, a BSP tree is nothing more than a series of
binary subdivisions that partion space into eversmaller pieces. That’s a simple data struc-
ture, and a BSP compiler is a correspondingly simple tool. First, it groups all the surfaces
(lines in 2-D, or polygons in 3-D) together into a single subspace that encompasses the
entire world of the database. Then, it chooses one of the surfaces as the root node, and
uses its line or plane to divide the remaining surfaces into two subspaces, splitting surfaces
into two parts if they cross the line or plane of the root. Each of the two resultant subspaces
is then processed in the same fashion, and so on, recursively, until the point is reached
where all surfaces have been assigned to nodes, and each leaf surface subdivides a sub
space that is empty except for that surface. Put another way, the root node carves space
into two parts, and the root’s children carve each of those parts into two more parts, and so
on, with each surface carving ever smaller subspaces, until all surfaces have been used.
(Actually, there are many other lines or planes that a BSP tree can use to carve up space,
but this is the approach we’ll use in the current discussion.)
If you find any of the above confusing (and it would be understandable if that were
the case; BSP trees are not easy to get the hang of), you might want to refer back to
the previous chapter. It would also be a good idea to get hold of the visual BSP
compiler I’ll discuss shortly; when it comes to understanding BSP trees, there’s noth-
ing quite like seeing one being built.
So there are really only two interesting operations in building a BSP tree: choosing a
root node for the current subspace (a “splitter”) and assigning surfaces to one side
or another of the current root node, splitting any that straddle the splitter. We’ll get
to the issue of choosing splitters shortly, but first let’s look at the process of splitting
and assigning. To do that, we need to understand parametric lines.

Parametric Lines
We’re all familiar with lines described in slope-intercept form, with y as a function of x
y = m x + b
but there’s another sort of line description that’s very useful for clipping (and for a
variety of 3-D purposes, such as curved surfaces and texture mapping): parametric

Compiling BSP Trees 1 1 1 9

lines. In parametric lines, x and y are decoupled from one another, and are instead
described as a function of the parameter t:

x = Xstart + %nd - x,,,,)
Y = Ys,t + t(Yend - Y,,,).

‘ = ‘start + ‘(Lend - ‘start)

This can be summarized as

where L = (x, y).
Figure 60.1 shows how a parametric line works. The t parameter describes how far
along a line segment the current x and y coordinates are. Note that this description
is valid not only for the line segment, but also for the entire infinite line; however,
only points with t values between 0 and 1 are actually on the line segment.
In our 2-D BSP compiler (as you’ll recall from the previous chapter, we’re working
with 2-D trees for simplicity, but the principles generalize to 3-D), we’ll represent our
walls (all vertical) as line segments viewed from above. The segments will be stored
in parametric form, with the endpoints of the original line segment and two t values
describing the endpoints of the current (possibly clipped) segment providing a com-
plete specification for each segment, as shown in Figure 60.2.
What does that do for us? For one thing, it keeps clipping errors from creeping in,
because clipped line segments are always based on the original line segment, not
derived from clipped versions. Also, it’s potentially a more compact format, because
we need to store the endpoints only for the original line segments; for clipped line
segments, we can just store pairs of t values, along with a pointer to the original line
segment. The biggest win, however, is that it allows us to use parametric line clip-
ping, a very clean form of clipping, indeed.

(1 60,170) ,’
i k 1 . 2

(1 50,150)

r 1
(133,117) f k0.67 I Line equations: I

00)50)/ I y = 50 + t(150-50)
x = 100+t(150-100~

k 0
I I

(80,lO)).
ob-0.4

A sample parametric line.
Figure 60.1

1 120 Chapter 60

Clipped segment #1: f=O to M . 2 5 t = 0.25

Original line segment:
(100,50), (150,1501,
from t=O to 01

Line segment storage in the BSP compiler:
Figure 60.2

Parametric Line Clipping
In order to assign a line segment to one subspace or the other of a splitter, we must
somehow figure out whether the line segment straddles the splitter or falls on one
side or the other. In order to determine that, we first plug the line segment and
splitter into the following parametric line intersection equation
numer = N (L,,, - SS,,,) (Equation 1)
denom = -N (Lend - Ls,,) (Equation 2)
tintersect = numer / denom (Equation 3)
where N is the normal of the splitter, SSmrt is the start point of the splitting line seg-
ment in standard (x,y) form, and LSmrt and Lend are the endpoints of the line segment
being split, again in (x,y) form. Figure 60.3 illustrates the intersection calculation.
Due to lack of space, I’m just going to present this equation and its implications as fact,
rather than deriving them; if you want to know more, there’s an excellent explanation
on page 1 17 of Cmputer Graphics: Principb and Practice, by Foley and van Dam (Addison
Wesley, ISBN 0-201-121 10-7), a book that you should certainly have in your library.
If the denominator is zero, we know that the lines are parallel and don’t intersect, so
we don’t divide, but rather check the sign of the numerator, which tells us which side
of the splitter the line segment is on. Otherwise, we do the division, and the result is

Compiling BSP Trees 1 1 21

1

Clipped

Clipped segment #2: k0.6 to kl Lend
t = 1

S: Splitting line segment

1 122 Chapter 60

the t value for the intersection point, as shown in Figure 60.3. We then simply compare
the t value to the t values of the endpoints of the line segment being split. If it’s be-
tween them, that’s where we split the line segment, otherwise, we can tell which side of
the splitter the line segment is on by which side of the line segment’s t range it’s on.
Simple comparisons do all the work, and there’s no need to do the work of generating
actual x and y values. If you look closely at Listing 60.1, the core of the BSP compiler,
you’ll see that the parametric clipping code itself is exceedingly short and simple.
One interesting point about Listing 60.1 is that it generates normals to splitting surfaces
simply by exchanging the x and y lengths of the splitting line segment and negating
the resultant y value, thereby rotating the line 90 degrees. In 3-D, it’s not that simple
to come by a normal; you could calculate the normal as the cross-product of two of
the polygon’s edges, or precalculate it when you build the world database.

The BSP Compiler
Listing 60.1 shows the core of a BSP compiler-the code that actually builds the BSP
tree. (Note that Listing 60.1 is excerpted from a C++ .CPP file, but in fact what I show
here is very close to straight C . It may even compile as a .C file, though I haven’t
checked.) The compiler begins by setting up an empty tree, then passes that tree
and the complete set of line segments from which a BSP tree is to be generated to
SelectBSPTree(), which chooses a root node and calls BuildBSPTree() to add that
node to the tree and generate child trees for each of the node’s two subspaces.
BuildBSPTree() calls SelectBSPTree() recursively to select a root node for each of
those child trees, and this continues until all lines have been assigned nodes.
SelectBSP() uses parametric clipping to decide on the splitter, as described below,
and BuildBSPTree() uses parametric clipping to decide which subspace of the split-
ter each line belongs in, and to split lines, if necessary.

LISTING 60.1 160-1 .CPP
d e f i n e MAX-NUM-LINESEGS 1000
d e f i n e MAX-INT Ox7FFFFFFF
d e f i n e MATCH-TOLERANCE 0.00001
/ / A v e r t e x
t y p e d e f s t r u c t _VERTEX
I

double x :
d o u b l e y :

1 VERTEX:
/ / A p o t e n t i a l l y s p l i t p i e c e o f a l i n e segment, as processed f rom the
/ / base l i n e i n t h e o r i g i n a l l i s t
t y p e d e f s t r u c t -LINESEG
{

- LINESEG *pnex t l i neseg :
i n t s t a r t v e r t e x :
i n t e n d v e r t e x :
doub le wa l l t op :
doub le wa l l bo t tom:
d o u b l e t s t a r t :
doub le tend:

Compiling BSP Trees 1 123

int color;
- LINESEG *pfronttree;
LINESEG *pbacktree;

1 LINESEG. *PLINESEG:
static VERTEX *pvertexlist;
static int NumCompiledLinesegs - 0:
static LINESEG *pCompiledLinesegs:
/ / Builds a BSP tree from the specified line list. List must contain
/ / at least one entry. If pCurrentTree is NULL, then this is the root
/ / node, otherwise pCurrentTree is the tree that's been build so far.
/ / Returns NULL for errors.
LINESEG * SelectBSPTree(L1NESEG * plineseghead.
(

LINESEG * pCurrentTree, LINESEG ** pParentsChildPointer)

LINESEG *pminsplit;
int minsplits:
int tempsplitcount;
LINESEG *prootline:
LINESEG *pcurrentline:
double nx. ny. numer, denom. t;
/ / Pick a line as the root. and remove it from the list o f lines
/ / to be categorized. The line we'll select is the one of those in
/ / the list that splits the fewest of the other lines in the list
mi nspl its - MAX-INT:
prootline - plineseghead;
while (prootline !- NULL) (

pcurrentline - plineseghead;
tempsplitcount - 0;
while (pcurrentline !- NULL) I

/ / See how many other lines the current line splits
nx - pvertexlist[prootline->startvertex].y -

pvertexlist[prootline->endvertexl.y;
ny - -(pvertexlist[prootline->startvertex].x -

pvertexlist[prootline->endvertexl.x);
/ / Calculate the dot products we'll need for line
/ / intersection and spatial relationship
numer - (nx * (pvertexlist[pcurrentline->startvertexl.x -

p v e r t e x l i s t [p r o o t l i n e - > s t a r t v e r t e x 3 . x)) +
(ny * (pvertexlist[pcurrentline->startvertexl.y -
pvertexlist[prootline->startvertexl.y));

denom - ((- n x) * (pvertexlist[pcurrentline->endvertexl.x -

pvertexlist[pcurrentline->startvertexl.x)) +
((-fly) * (pvertexlist[pcurrentline->endvertexl.y -
pvertexlist[pcurrentline->startvertexl.y));

/ / Figure out if the infinite lines of the current line
/ / and the root intersect; if so, figure out if the
/ / current line segment is actually split, split if so,
/ / and add front/back polygons as appropriate
if (denom - 0.0) I

/ / No intersection. because lines are parallel: no
/ / split, s o nothing to do

/ / Infinite lines intersect: figure out whether the
/ / actual line segment intersects the infinite line
/ / of the root, and split if so
t - numer / denom;
if ((t > pcurrentline->tstart) I&

I else (

(t < pcurrentline->tend)) (
I / The root splits the current line
tempspl i tcounttt:

1 else (

1 124 Chapter 60

/ / Intersection outside segment limits, s o no
/ / split, nothing to do

I
I
pcurrentline = pcurrentline->pnextlineseg:

1
if (tempsplitcount < minsplits) (

pminsplit = prootline;

3
minsplits = tempsplitcount;

prootline = prootline->pnextlineseg:
I
/ / For now, make this a leaf node so we can traverse the tree
/ / as it is at this point. BuildBSPTreeO will add children as
I / appropriate
pminsplit->pfronttree = NULL:
pminsplit->pbacktree = NULL:
/ / Point the parent's child pointer to this node, so we can
/ / track the currently-build tree
*pParentsChildPointer = pminsplit;

I
return BuildBSPTree(p1ineseghead. pminsplit. pCurrentTree);

/ / Builds a BSP tree given the specified root, by creating front and
/ / back lists from the remaining lines, and calling itself recursively
LINESEG * BuildBSPTree(L1NESEG * plineseghead. LINESEG * prootline.

t
LINESEG * pCurrentTree)

LINESEG *pfrontlines;
LINESEG *pbacklines;
LINESEG *pcurrentline:
LINESEG *pnextlineseg;
LINESEG *psplitline;
double nx. ny. numer, denom. t;
int Done;
/ / Categorize all non-root lines as either in front of the root's
/ / infinite line, behind the root's infinite line, or split by the
/ / root's infinite line, in which case we split it into two lines
pfrontlines = NULL:
pbacklines = NULL;
pcurrentline = plineseghead;
while (pcurrentline != NULL)

/ / Skip the root line when encountered
if (pcurrentline == prootline)

1 else {
pcurrentline = pcurrentline->pnextlineseg:

nx = pvertexlist[prootline->startvertexl.y -
pvertexlist[prootline->endvertexl.y;

ny = -(pvertexlist[prootline->startvertexl.x -
pvertexlist[prootline->endvertexl.x);

/ / Calculate the dot products we'll need for line intersection
/ / and spatial relationship
numer = (nx * (pvertexlist[pcurrentline->startvertexl.x -

(ny * (pvertexlist[pcurrentline->startvertexl.y -
pvertexlist[prootline->startvertexl.x)) +

pvertexlist[prootline->startvertexl.y));
denom = ((-nx) * (pvertexlist[pcurrentline->endvertexl.x -

pvertexlist[pcurrentline->startvertex].x)) +
(-(ny) * (pvertexlist[pcurrentline->endvertexl.y -
pvertexlist[pcurrentline->startvertexl.y));

Compiling BSP Trees 1 125

/ / Figure out if the infinite lines of the current line and
/ / the root intersect; if so. figure out if the current line
/ / segment is actually split, split if s o . and add front/back
/ I polygons as appropriate
if (denom -- 0.0) {

/ / No intersection, because lines are parallel: just add
/ / to appropriate list
pnextlineseg - pcurrentline->pnextlineseg;
if (numer < 0.0) I

/ / Current line is in front of root line; link into
/ / front list
pcurrentline->pnextlineseg - pfrontlines;
pfrontlines - pcurrentline:
/ / Current line behind root line: link into back list
pcurrentline->pnextlineseg - pbacklines;
pbacklines - pcurrentline;

1 else (

1
pcurrentline - pnextlineseg;

1 else I
/ / Infinite lines intersect; figure out whether the actual
/ / line segment intersects the infinite line of the root,
/ / and split if s o
t - numer / denom;

> pcurrentline->tstart) &&

The line segment must be split; add one split
segment to each list
(NumCompiledLinesegs > (MAX-NUM-LINESEGS - 1)) (

(t < pcurrentline->tend)) {

DisplayMessageBox("0ut of space for line segs; "

return NULL;
"increase MAX-NUM-LINESEGS") :

Make a new line entry for the split Dart of line
pspl i tl i ne - &pCompi ledLi nesegs[NumCompi 1 edLi nesegsl ;
NumCompiledLinesegs++;
*psplitline - *pcurrentline;
psplitline->tstart - t;
pcurrentline->tend - t;
pnextlineseg - pcurrentline->pnextlineseg:
if (numer < 0.0) {

I / Presplit part is in front of root line: link
/ / into front list and put postsplit part in back
/ f list
pcurrentline->pnextlineseg - pfrontlines;
pfrontlines - pcurrentline;
psplitline->pnextlineseg - pbacklines;
pbackl ines - pspl i tl ine:
/ / Presplit part is in back of root line: link
/ / into back list and put postsplit part in front
I / list
psplitline->pnextlineseg - pfrontlines;
pfrontlines - psplitline:
pcurrentline->pnextlineseg - pbacklines:
pbacklines - pcurrentline;

1 else (

>
pcurrentline - pnextlineseg:

1 else (

1 126 Chapter 60

/ / Intersection outside segment limits, s o no need to
/ I split; just add to proper list
pnextlineseg - pcurrentline->pnextlineseg:
Done - 0;
while (!Done) {

if (numer < -MATCHTOLERANCE)
I / Current line is in front of root line;
/ I link into front list
pcurrentline->pnextlineseg - pfrontlines;
pfrontlines - pcurrentline:
Done - I ;

/ / Current line i s behind root line: link
/ / into back list
pcurrentline->pnextlineseg - pbacklines;
pbacklines - pcurrentline;
Done - 1:
I / The point on the current line we picked to
I / do frontlback evaluation happens to be
/ / collinear with the root, s o use the other
/ / end of the current line and try again
numer -

1 else if (numer > MATCH-TOLERANCE) [

1 else I

(nx *
(pvertexlist[pcurrentline->endvertexl.x -
pvertexlist[prootline->startvertexl.x))+

(pvertexlist[pcurrentline-hndvertex1.y -
pvertexlist[prootline->startvertexl.y));

(ny *

I
I
pcurrentline - pnextlineseg;

>
I

1
I
/ I Make a node out of the root line, with the front and back trees
/ I attached
if (pfrontlines - NULL) {

1 else I
prootline->pfronttree - NULL:
if (!SelectBSPTree(pfrontlines. pCurrentTree,

&prootline->pfronttree)) I
return NULL:

1
I
if (pbacklines -- NULL) (

1 else {
prootline->pbacktree - NULL:
if (!SelectBSPTree(pbacklines. pCurrentTree.

&prootline->pbacktree)) {

I
return NULL:

1
return(proot1ine);

1

Listing 60.1 isn’t very long or complex, but it’s somewhat more complicated than it
could be because it’s structured to allow visual display of the ongoing compilation

Compiling BSP Trees 1 127

process. That’s because Listing 60.1 is actuallyjust a part of a BSP compiler for Win32
that visually depicts the progressive subdivision of space as the BSP tree is built. (Note
that Listing 60.1 might not compile as printed; I may have missed copying some
global variables that it uses.) The complete code is too large to print here in its
entirety, but it’s on the CD-ROM in file DDJBSP.ZIP.

Optimizing the BSP Tree
In the previous chapter, I promised that I’d discuss how to go about deciding which
wall to use as the splitter at each node in constructing a BSP tree. That turns out to
be a far more difficult problem than one might think, but we can’t ignore it, because
the choice of splitter can make a huge difference.
Consider, for example, a BSP in which the line or plane of the splitter at the root
node splits every single other surface in the world, doubling the total number of
surfaces to be dealt with. Contrast that with a BSP built from the same surface set
in which the initial splitter doesn’t split anything. Both trees provide a valid order-
ing, but one tree is much larger than the other, with twice as many polygons after
the selection ofjust one node. Apply the same difference again to each node, and
the relative difference in size (and, correspondingly, in traversal and rendering
time) soon balloons astronomically. So we need to do something to optimize the
BSP tree-but what? Before we can try to answer that, we need to know exactly
what we’d like to optimize.
There are several possible optimization objectives in BSP compilation. We might
choose to balance the tree as evenly as possible, thereby reducing the average depth
to which the tree must be traversed. Alternatively, we might try to approximately
balance the area or volume on either side of each splitter. That way we don’t end up
with huge chunks of space in some tree branches and tiny slivers in others, and the
overall processing time will be more consistent. Or, we might choose to select planes
aligned with the major axes, because such planes can help speed up our BSP traversal.
The BSP metric that seems most useful to me, however, is the number of polygons
that are split into two polygons in the course of building a BSP tree. Fewer splits is
better; the tree is smaller with fewer polygons, and drawing will go faster with fewer
polygons to draw, due to per-polygon overhead. There’s a problem with the fewest-
splits metric, though: There’s no sure way to achieve it.
The obvious approach to minimizing polygon splits would be to try all possible trees
to find the best one. Unfortunately, the order of that particular problem is N!, as I
found to my dismay when I implemented brute-force optimization in the first ver-
sion of my BSP compiler. Take a moment to calculate the number of operations for
the 20-polygon set I originally tried brute-force optimization on. I’ll give you a hint:
There are 19 digits in 20!, and if each operation takes only one microsecond, that’s
over 70,000 years (or, if you prefer, over 500,000 dog years). Now consider that a

1 128 Chapter 60

single game level might have 5,000 to 10,000 polygons; there aren’t anywhere near
enough dog years in the lifetime of the universe to handle that. We’re going to have
to give up on optimal compilation and come up with a decent heuristic approach,
no matter what optimization objective we select.
In Listing 60.1, I’ve applied the popular heuristic of choosing as the splitter at each
node the surface that splits the fewest of the other surfaces that are being consid-
ered for that node. In other words, I choose the wall that splits the fewest of the walls
in the subspace it’s subdividing.

BSP Optimization: an Undiscovered Country
Although BSP trees have been around for at least 15 years now, they’re still only
partially understood and are a ripe area for applied research and general ingenuity.
You might want to try your hand at inventing new BSP optimization approaches; it’s
an interesting problem, and you might strike paydirt. There are many things that
BSP trees can’t do well, because it takes so long to build them-but what they do,
they do exceedingly well, so a better compilation approach that allowed BSP trees to
be used for more purposes would be valuable, indeed.

Compiling BSP Trees 1 1 29

	previous:
	home:
	next:

