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As long-time readkrs of  my columns know, I  tend to move  my  family around  the 
country  quite  a bit. &bange  doesn't come out of the blue, so there's some interesting 
history to every move roots of the latest move go back  even farther  than 
usual. To wit: 

om Pennsylvania to California, I started writing a 
I was paid peanuts  for writing it, and I doubt if even 
t issues the columns appeared  in,  but I had a lot of 

By 1991, we were inVermont,  and  I was writing the OraphicsPro~ummingcolumn for 
Dr. Dobb's Journal (a& having a  great time doing it, even though it took all my spare 
nights and weekends $0 stay ahead of the  deadlines).  In those days I received a  lot of 
unsolicited evaluation software, including  a PC shareware game called Commander 
Keen, a side-scrolling game that was every bit as good as the  hot  Nintendo games of 
the day. I loved the way the game looked, and actually drafted  a  column  opening 
about how for years I'd  been claiming that  the PC could be a  great game machine in 
the  hands of great  programmers, and  here, finally, was the  proof, in the  form of 
Commander Keen. In  the  end,  though, I decided  that would be too close  to a  prod- 
uct review, an  area  that I've observed inflames passions in nonconstructive ways, so I 
went with a  different  opening. 

"graphics  for  the EGA and VGA. 
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In 1992, I did a series of columns about my X-Sharp 3-D library, and  hung  out  on 
DDJs bulletin board. There was another guy  who hung  out there who  knew a lot 
about 3-D, a fellow named John Carmack  who was surely the only game  programmer 
I’d  ever heard of who developed under NEXTSTEP. When we moved  to Redmond,  I 
didn’t have  time for BBSs anymore, though. 
In early 1993, I  hired Chris  Hecker. Later that year, Chris  showed  me an alpha copy 
of DOOM, and I nearly  fell out of my chair. About  a year  later,  Chris forwarded me a 
newsgroup post about NEXTSTEP, and said, “Isn’t this the guy  you  used to know on 
the DDJ bulletin board?”  Indeed  it was John Carmack; what’s more, it turned  out 
that John was the guy  who had written DOOM. I sent  him  a congratulatory piece of 
mail, and  he sent back  some thoughts about what he was working on, and some- 
where in there  I asked if he ever  came up my  way. It  turned  out he  had family in 
Seattle, so he stopped in and visited, and we had a  great time. 
Over the next year, we exchanged some fascinating mail, and I became steadily more 
impressed  with John’s company,  id  Software.  Eventually, John asked if I’d be inter- 
ested in joining id, and after a  good bit of consideration I couldn’t think of anything 
else that would be as much fun or teach  me  as much. The upshot is that  here we all 
are in Dallas, our fourth move  of 2,000 miles or more since  I’ve starting writing in 
the computer field, and now  I’m writing  some  seriously  cool 3-D software. 
Now that I’m here, it’s an eye-opener to look  back and see how  events fit together 
over the last decade. You see,  when John started doing PC game programming  he 
learned fast graphics programming from those early Programmer’s Journal articles of 
mine. The copy  of Commander Keen that validated my faith in the PC  as a  game 
machine was the  fruit of those articles, for that was an id game  (although  I  didn’t 
know that  then). When John was hanging out  on the DDJBBS, he had just  done 
Castle  Wolfenstein 3-D, the first great  indoor 3-D game, and was thinking about how 
to do DOOM. (If  only I’d known that then!) And had I  not  hired Chris, or had he 
not somehow remembered me  talking about  that guy  who  used  NEXTSTEP,  I’d never 
have gotten back in touch with John,  and things would  surely be different. (At the 
very least, I wouldn’t be hearing jokes about how  my daughter’s going to grow up 
saying  “y’all”.) 
I think there’s a worthwhile lesson to be learned  from all  this, a lesson that I’ve 
seen hold  true  for many other people, as  well. If you do what  you  love, and do it as 
well  as  you can,  good things will eventually come of it.  Not necessarily  quickly or 
easily, but if you  stick  with it, they will come. There  are threads  that run  through 
our lives, and by the time we’ve been adults for  a while,  practically everything that 
happens has roots that  run  far back in time. The implication should be clear: If 
you  want good things to happen in your future,  stretch yourself and put in the 
extra effort now at whatever  you care passionately about, so those roots will have 
plenty to work  with  down the  road. 
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All this 
John is 
around 

is surprisingly 
the fellow  who 
them.  He also 

closely related to this chapter’s topic, BSP trees,  because 
brought BSP trees  into  the  spotlight by building DOOM 
got  me  started with BSP trees by explaining how DOOM 

worked and getting  me  interested  enough  to want to experiment;  the BSP com- 
piler  in this article is the  direct result. Finally, John has been  an invaluable help 
to me as I’ve learned  about BSP trees, as  will become  evident when we discuss 
BSP optimization. 
Onward  to compiling BSP trees. 

Compiling BSP Trees 
As you’ll  recall  from the previous  chapter,  a BSP tree is nothing  more  than  a  series of 
binary  subdivisions that  partion  space  into  eversmaller  pieces.  That’s  a  simple  data  struc- 
ture, and a BSP compiler is a  correspondingly  simple  tool.  First,  it  groups  all  the  surfaces 
(lines  in 2-D, or polygons  in 3-D) together  into  a  single  subspace  that  encompasses  the 
entire world of the  database. Then, it  chooses one of the surfaces as the  root  node, and 
uses  its line or plane to divide the  remaining  surfaces  into two subspaces,  splitting  surfaces 
into two parts if they  cross the  line or plane of the  root. Each of the two resultant  subspaces 
is then  processed  in  the  same  fashion, and so on, recursively,  until the  point is reached 
where  all  surfaces  have  been  assigned  to  nodes, and each leaf  surface  subdivides  a sub 
space  that is  empty except  for  that  surface.  Put another way, the root node carves  space 
into two parts, and the root’s  children carve each of  those  parts  into two more  parts, and so 
on, with each  surface  carving  ever  smaller  subspaces,  until  all  surfaces have been  used. 
(Actually, there  are many other lines or planes  that  a BSP tree  can use to carve up space, 
but this  is the  approach we’ll  use in  the current discussion.) 
If  you find any of the above confusing (and it  would be  understandable if that were 
the case; BSP trees are  not easy to get the  hang of), you might want  to refer back  to 
the previous chapter. It would  also be a good  idea to get  hold of the visual  BSP 
compiler I’ll  discuss  shortly;  when it comes to  understanding BSP trees, there’s noth- 
ing  quite like seeing one being built. 
So there  are really  only two interesting  operations in building a BSP tree: choosing a 
root  node  for  the  current subspace (a “splitter”) and assigning  surfaces  to one side 
or  another of the  current  root  node, splitting  any that straddle the splitter. We’ll get 
to  the issue  of choosing splitters shortly, but first  let’s look at  the process of splitting 
and assigning. To do that, we need to  understand  parametric lines. 

Parametric Lines 
We’re  all  familiar  with  lines  described  in  slope-intercept form, with y as a  function of x 
y = m x + b  
but there’s another sort of line description that’s very useful for clipping (and for a 
variety  of 3-D purposes, such  as  curved surfaces and texture  mapping): parametric 
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lines. In parametric lines, x and y are decoupled from  one another, and are instead 
described as a function of the parameter t: 

x = Xstart + %nd - x,,,,) 
Y = Ys,t + t(Yend - Y,,,). 

‘ = ‘start + ‘(Lend - ‘start) 

This can be summarized as 

where L = (x, y).  
Figure 60.1 shows  how a parametric line works. The t parameter describes how far 
along a line segment the  current x and y coordinates are. Note that this description 
is valid not only for the line segment, but also for the entire infinite line; however, 
only points with t values  between 0 and 1 are actually on the line segment. 
In  our 2-D BSP compiler (as you’ll  recall from the previous chapter, we’re  working 
with 2-D trees for simplicity, but the principles generalize to 3-D), we’ll represent our 
walls (all vertical) as line segments viewed from above. The segments will be stored 
in parametric form, with the endpoints of the original line segment and two t values 
describing the endpoints of the current (possibly clipped) segment providing a com- 
plete specification for each segment, as  shown in  Figure 60.2. 
What does that do for us?  For one thing, it  keeps clipping errors from creeping in, 
because clipped line segments are always based on the original line segment, not 
derived from clipped versions. Also, it’s potentially a  more compact format, because 
we need to store the endpoints only for  the original line segments; for clipped line 
segments, we can just store pairs of t  values, along with a  pointer to the original line 
segment. The biggest  win,  however, is that it allows  us to use parametric line clip- 
ping, a very clean form of clipping, indeed. 

(1 60,170) ,’ 
i k 1 . 2  

(1 50,150) 

r 1  
(133,117) f k0.67 I Line equations: I 

00)50)/ I y = 50 + t( 150-50) 
x =  100+t(150-100~ 

k 0  
I I 

(80,lO) ). 
ob-0.4 

A sample parametric line. 
Figure 60.1 
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Clipped  segment #1: f=O to M . 2 5  t = 0.25 

Original line  segment: 
(100,50), (150,1501, 
from t=O to 01 

Line segment storage in the BSP compiler: 
Figure 60.2 

Parametric  Line Clipping 
In order to assign a line segment to one subspace or  the  other of a splitter, we must 
somehow figure out whether the line segment straddles the splitter or falls on  one 
side or the other. In order to determine that, we first plug the line segment and 
splitter into  the following parametric line intersection equation 
numer = N (L,,, - SS,,,) (Equation 1) 
denom = -N (Lend - Ls,,) (Equation 2) 
tintersect = numer / denom (Equation 3) 
where N is the normal of the splitter, SSmrt is the start point of the splitting line seg- 
ment in standard (x,y) form, and LSmrt and Lend are  the  endpoints of the line segment 
being split, again  in (x,y) form. Figure 60.3 illustrates the intersection calculation. 
Due  to  lack of space,  I’m just going to present  this  equation and its  implications as fact, 
rather than  deriving them; if you  want  to  know more, there’s an excellent  explanation 
on page 1 17 of Cmputer Graphics: Principb and Practice, by  Foley and van  Dam  (Addison 
Wesley, ISBN 0-201-121 10-7), a book that you should certainly  have in your  library. 
If the denominator is zero, we know that the lines are parallel and don’t intersect, so 
we don’t divide, but rather check the sign of the numerator, which  tells  us  which  side 
of the splitter the line segment is on. Otherwise, we do the division, and the result is 
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1 

Clipped 

Clipped  segment #2: k0.6 to kl Lend 
t =  1 

S: Splitting  line  segment 
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the  t value for  the intersection point, as  shown  in  Figure  60.3. We then simply compare 
the  t value  to the  t values  of the  endpoints of the line segment being split. If it’s be- 
tween them, that’s where we split the line segment, otherwise, we can  tell  which side of 
the splitter the line segment is on by which  side of the line segment’s t range it’s on. 
Simple comparisons do all the work, and there’s no need to do  the work of generating 
actual x and y values. If  you look closely at Listing  60.1, the core of the BSP compiler, 
you’ll see that the parametric clipping code itself is exceedingly short  and simple. 
One interesting point about Listing  60.1 is that it generates normals  to  splitting  surfaces 
simply  by exchanging  the  x and y lengths of the splitting line segment and negating 
the resultant y value, thereby rotating  the  line 90 degrees. In 3-D,  it’s not  that simple 
to come by a  normal; you could calculate the  normal as the cross-product of two of 
the polygon’s edges, or precalculate it when  you build the world database. 

The BSP Compiler 
Listing  60.1 shows the core of a BSP compiler-the code  that actually builds the BSP 
tree. (Note that Listing  60.1 is excerpted from a C++ .CPP file, but in fact  what I show 
here is very close  to straight C .  It may even compile as a .C file, though  I haven’t 
checked.) The compiler begins by setting up  an empty tree,  then passes that  tree 
and  the  complete set of line segments from which a BSP tree is to be generated to 
SelectBSPTree(), which chooses a  root  node  and calls BuildBSPTree() to add  that 
node to the tree and  generate child trees for  each of the node’s two subspaces. 
BuildBSPTree() calls SelectBSPTree() recursively to select a  root  node  for  each of 
those  child  trees, and this continues  until all lines have been assigned nodes. 
SelectBSP() uses parametric clipping to decide on the splitter, as described below, 
and BuildBSPTree() uses parametric clipping to decide which subspace of the split- 
ter each line belongs in, and to split lines, if necessary. 

LISTING  60.1  160-1 .CPP 
# d e f i n e  MAX-NUM-LINESEGS 1000 
# d e f i n e  MAX-INT Ox7FFFFFFF 
# d e f i n e  MATCH-TOLERANCE 0.00001 
/ /  A v e r t e x  
t y p e d e f   s t r u c t  _VERTEX 
I 

double  x :  
d o u b l e   y :  

1 VERTEX: 
/ /  A p o t e n t i a l l y   s p l i t   p i e c e   o f  a l i n e  segment,   as  processed  f rom  the 
/ /  base l i n e  i n  t h e   o r i g i n a l   l i s t  
t y p e d e f   s t r u c t  -LINESEG 
{ 

- LINESEG *pnex t l i neseg :  
i n t   s t a r t v e r t e x :  
i n t   e n d v e r t e x :  
doub le   wa l l   t op :  
doub le   wa l l   bo t tom:  
d o u b l e   t s t a r t :  
doub le   tend:  
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int  color; 
- LINESEG  *pfronttree; 
LINESEG  *pbacktree; 

1 LINESEG. *PLINESEG: 
static  VERTEX  *pvertexlist; 
static  int  NumCompiledLinesegs - 0: 
static  LINESEG  *pCompiledLinesegs: 
/ /  Builds  a  BSP  tree  from  the  specified  line  list.  List  must  contain 
/ /  at  least  one  entry.  If  pCurrentTree  is  NULL,  then  this is the  root 
/ /  node,  otherwise  pCurrentTree  is  the  tree  that's  been  build so far. 
/ /  Returns  NULL  for  errors. 
LINESEG * SelectBSPTree(L1NESEG * plineseghead. 
( 

LINESEG * pCurrentTree,  LINESEG ** pParentsChildPointer) 

LINESEG  *pminsplit; 
int  minsplits: 
int  tempsplitcount; 
LINESEG  *prootline: 
LINESEG  *pcurrentline: 
double nx. ny. numer,  denom.  t; 
/ /  Pick a line  as  the root. and  remove  it  from  the  list o f  lines 
/ /  to  be  categorized.  The  line we'll select is the  one  of  those  in 
/ /  the  list  that  splits  the  fewest  of  the  other  lines in the  list 
mi nspl its - MAX-INT: 
prootline - plineseghead; 
while  (prootline !- NULL) ( 

pcurrentline - plineseghead; 
tempsplitcount - 0; 
while  (pcurrentline !- NULL) I 

/ /  See how  many  other  lines  the  current  line  splits 
nx - pvertexlist[prootline->startvertex].y - 

pvertexlist[prootline->endvertexl.y; 
ny - -(pvertexlist[prootline->startvertex].x - 

pvertexlist[prootline->endvertexl.x); 
/ /  Calculate  the  dot  products we'll need  for  line 
/ /  intersection  and  spatial  relationship 
numer - (nx * (pvertexlist[pcurrentline->startvertexl.x - 

p v e r t e x l i s t [ p r o o t l i n e - > s t a r t v e r t e x 3 . x ) )  + 
(ny * (pvertexlist[pcurrentline->startvertexl.y - 
pvertexlist[prootline->startvertexl.y)); 

denom - ( ( - n x )  * (pvertexlist[pcurrentline->endvertexl.x - 

pvertexlist[pcurrentline->startvertexl.x)) + 
((-fly) * (pvertexlist[pcurrentline->endvertexl.y - 
pvertexlist[pcurrentline->startvertexl.y)); 

/ /  Figure  out  if  the  infinite  lines  of  the  current  line 
/ /  and  the  root  intersect;  if so, figure  out  if  the 
/ /  current  line  segment  is  actually  split,  split  if so, 
/ /  and  add  front/back  polygons  as  appropriate 
if  (denom - 0.0) I 

/ /  No intersection.  because  lines  are  parallel: no 
/ /  split, s o  nothing  to  do 

/ /  Infinite  lines  intersect:  figure  out  whether  the 
/ /  actual  line  segment  intersects  the  infinite  line 
/ /  of  the  root,  and  split  if so 
t - numer / denom; 
if ((t > pcurrentline->tstart) I& 

I else ( 

(t < pcurrentline->tend)) ( 
I /  The  root  splits  the  current  line 
tempspl i tcounttt: 

1 else ( 
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/ /  Intersection  outside  segment  limits, s o  no 
/ /  split,  nothing  to  do 

I 
I 
pcurrentline = pcurrentline->pnextlineseg: 

1 
if  (tempsplitcount < minsplits) ( 

pminsplit = prootline; 

3 
minsplits = tempsplitcount; 

prootline = prootline->pnextlineseg: 
I 
/ /  For now,  make  this  a  leaf  node so  we can  traverse  the  tree 
/ /  as  it is at  this point. BuildBSPTreeO will add  children  as 
I /  appropriate 
pminsplit->pfronttree = NULL: 
pminsplit->pbacktree = NULL: 
/ /  Point  the parent's child  pointer  to  this  node, so we  can 
/ /  track  the  currently-build  tree 
*pParentsChildPointer = pminsplit; 

I 
return BuildBSPTree(p1ineseghead. pminsplit.  pCurrentTree); 

/ /  Builds  a BSP tree  given  the  specified  root, by creating  front  and 
/ /  back  lists  from  the  remaining  lines, and  calling  itself  recursively 
LINESEG * BuildBSPTree(L1NESEG * plineseghead.  LINESEG * prootline. 

t 
LINESEG * pCurrentTree) 

LINESEG  *pfrontlines; 
LINESEG  *pbacklines; 
LINESEG  *pcurrentline: 
LINESEG  *pnextlineseg; 
LINESEG  *psplitline; 
double nx.  ny. numer,  denom. t; 
int  Done; 
/ /  Categorize all non-root  lines as  either in front  of  the root's 
/ /  infinite  line,  behind  the  root's  infinite  line,  or  split by the 
/ /  root's infinite  line,  in  which  case  we  split  it  into  two  lines 
pfrontlines = NULL: 
pbacklines = NULL; 
pcurrentline = plineseghead; 
while  (pcurrentline != NULL) 

/ /  Skip  the  root  line  when  encountered 
if  (pcurrentline == prootline) 

1 else { 
pcurrentline = pcurrentline->pnextlineseg: 

nx = pvertexlist[prootline->startvertexl.y - 
pvertexlist[prootline->endvertexl.y; 

ny = -(pvertexlist[prootline->startvertexl.x - 
pvertexlist[prootline->endvertexl.x); 

/ /  Calculate  the  dot  products we'll need  for  line  intersection 
/ /  and spatial  relationship 
numer = (nx * (pvertexlist[pcurrentline->startvertexl.x - 

(ny * (pvertexlist[pcurrentline->startvertexl.y - 
pvertexlist[prootline->startvertexl.x)) + 

pvertexlist[prootline->startvertexl.y)); 
denom = ((-nx) * (pvertexlist[pcurrentline->endvertexl.x - 

pvertexlist[pcurrentline->startvertex].x)) + 
(-(ny) * (pvertexlist[pcurrentline->endvertexl.y - 
pvertexlist[pcurrentline->startvertexl.y)); 
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/ /  Figure  out  if  the  infinite  lines  of  the  current  line  and 
/ /  the  root  intersect; if so. figure  out if the  current  line 
/ /  segment  is  actually  split,  split  if s o .  and  add front/back 
/ I  polygons  as  appropriate 
if (denom -- 0.0 )  { 

/ /  No intersection,  because  lines  are  parallel:  just  add 
/ /  to  appropriate  list 
pnextlineseg - pcurrentline->pnextlineseg; 
if  (numer < 0.0) I 

/ /  Current  line  is  in  front  of  root  line;  link  into 
/ /  front  list 
pcurrentline->pnextlineseg - pfrontlines; 
pfrontlines - pcurrentline: 
/ /  Current  line  behind  root line: link  into  back  list 
pcurrentline->pnextlineseg - pbacklines; 
pbacklines - pcurrentline; 

1 else ( 

1 
pcurrentline - pnextlineseg; 

1 else I 
/ /  Infinite  lines  intersect;  figure  out  whether  the actual 
/ /  line  segment  intersects  the  infinite  line  of  the  root, 
/ /  and split  if s o  
t - numer / denom; 

> pcurrentline->tstart) && 

The  line  segment  must be split; add one  split 
segment  to  each  list 
(NumCompiledLinesegs > (MAX-NUM-LINESEGS - 1)) ( 

(t < pcurrentline->tend)) { 

DisplayMessageBox("0ut of  space  for  line  segs; " 

return  NULL; 
"increase MAX-NUM-LINESEGS") : 

Make a new  line  entry  for  the  split  Dart  of  line 
pspl i tl i ne - &pCompi  ledLi nesegs[NumCompi 1 edLi nesegsl ; 
NumCompiledLinesegs++; 
*psplitline - *pcurrentline; 
psplitline->tstart - t; 
pcurrentline->tend - t; 
pnextlineseg - pcurrentline->pnextlineseg: 
if  (numer < 0.0) { 

I /  Presplit  part  is in front  of  root  line:  link 
/ /  into  front  list  and put postsplit  part in back 
/ f  list 
pcurrentline->pnextlineseg - pfrontlines; 
pfrontlines - pcurrentline; 
psplitline->pnextlineseg - pbacklines; 
pbackl ines - pspl i tl ine: 
/ /  Presplit  part  is  in  back  of  root line: link 
/ /  into  back  list  and  put  postsplit  part  in  front 
I /  list 
psplitline->pnextlineseg - pfrontlines; 
pfrontlines - psplitline: 
pcurrentline->pnextlineseg - pbacklines: 
pbacklines - pcurrentline; 

1 else ( 

> 
pcurrentline - pnextlineseg: 

1 else ( 
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/ /  Intersection  outside  segment  limits, s o  no  need  to 
/ I  split;  just add to  proper  list 
pnextlineseg - pcurrentline->pnextlineseg: 
Done - 0;  
while (!Done) { 

if (numer < -MATCHTOLERANCE) 
I /  Current  line is in  front  of  root  line; 
/ I  link  into  front  list 
pcurrentline->pnextlineseg - pfrontlines; 
pfrontlines - pcurrentline: 
Done - I ;  

/ /  Current  line i s  behind  root  line:  link 
/ /  into  back  list 
pcurrentline->pnextlineseg - pbacklines; 
pbacklines - pcurrentline; 
Done - 1: 
I /  The  point on the  current  line  we picked to 
I /  do  frontlback  evaluation  happens  to  be 
/ /  collinear  with  the  root, s o  use  the  other 
/ /  end  of  the  current  line and  try  again 
numer - 

1 else  if  (numer > MATCH-TOLERANCE) [ 

1 else I 

(nx * 
(pvertexlist[pcurrentline->endvertexl.x - 
pvertexlist[prootline->startvertexl.x))+ 

(pvertexlist[pcurrentline-hndvertex1.y - 
pvertexlist[prootline->startvertexl.y)); 

(ny * 

I 
I 
pcurrentline - pnextlineseg; 

> 
I 

1 
I 
/ I  Make a node  out  of  the  root  line,  with  the  front and  back trees 
/ I  attached 
if  (pfrontlines - NULL) { 

1 else I 
prootline->pfronttree - NULL: 
if (!SelectBSPTree(pfrontlines. pCurrentTree, 

&prootline->pfronttree)) I 
return NULL: 

1 
I 
if  (pbacklines -- NULL) ( 

1 else { 
prootline->pbacktree - NULL: 
if (!SelectBSPTree(pbacklines. pCurrentTree. 

&prootline->pbacktree)) { 

I 
return NULL: 

1 
return(proot1ine); 

1 

Listing 60.1 isn’t  very long or complex, but it’s  somewhat more complicated than  it 
could be because it’s structured  to allow  visual  display of the  ongoing compilation 
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process. That’s because  Listing 60.1 is actuallyjust a  part of a BSP compiler for Win32 
that visually depicts the progressive  subdivision of space as the BSP tree is built. (Note 
that Listing 60.1 might not compile as printed;  I may  have  missed copying  some 
global  variables that it uses.) The complete code is too large to print  here in its 
entirety, but it’s on the CD-ROM in  file DDJBSP.ZIP. 

Optimizing the BSP Tree 
In the previous chapter, I promised that I’d discuss  how  to  go about deciding which 
wall to use  as the splitter at each node in constructing a BSP tree. That turns  out to 
be a far more difficult problem than one might think, but we can’t ignore it, because 
the choice of splitter can make a  huge difference. 
Consider, for example, a BSP in which the  line or plane of the  splitter  at  the  root 
node splits  every single other surface in the world, doubling  the total number of 
surfaces to be dealt with. Contrast that with a BSP built from the same surface set 
in which the initial splitter doesn’t split anything. Both trees provide a valid order- 
ing,  but one tree is much larger than  the other, with  twice  as  many  polygons after 
the selection ofjust  one  node. Apply the same difference again to each node,  and 
the relative difference in size (and, correspondingly, in  traversal and  rendering 
time) soon balloons astronomically. So we need to do something to optimize the 
BSP tree-but what? Before we can try to answer that, we need to know  exactly 
what we’d like to optimize. 
There are several  possible optimization objectives  in BSP compilation. We might 
choose to balance the tree as  evenly  as  possible, thereby reducing the average depth 
to which the  tree must be traversed.  Alternatively, we might try to approximately 
balance the area or volume on either side of each splitter. That way  we don’t  end  up 
with huge chunks of  space  in  some tree branches and tiny  slivers in others, and the 
overall  processing  time will be more consistent. Or, we might choose to select planes 
aligned  with  the  major  axes,  because  such  planes  can help speed up our BSP traversal. 
The BSP metric that seems  most  useful to me, however, is the number of  polygons 
that  are split into two polygons  in the course of building a BSP tree. Fewer  splits  is 
better; the tree is smaller  with  fewer  polygons, and drawing will go faster with  fewer 
polygons to draw, due to per-polygon overhead. There’s a problem with the fewest- 
splits metric, though: There’s no sure way to achieve it. 
The obvious approach to minimizing  polygon  splits  would  be to try all  possible trees 
to find the best one. Unfortunately, the order of that particular problem is N!,  as I 
found to my dismay  when I implemented brute-force optimization in the first ver- 
sion  of my  BSP compiler.  Take a moment to calculate the number of operations for 
the 20-polygon  set I originally tried brute-force optimization on. I’ll  give  you a  hint: 
There  are 19 digits  in  20!, and if each operation takes  only one microsecond, that’s 
over 70,000 years (or, if  you prefer, over 500,000 dog years). Now consider that  a 
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single game level might have 5,000 to 10,000 polygons; there  aren’t anywhere near 
enough dog years in the lifetime of the universe to handle that. We’re going to have 
to  give up  on optimal compilation and come up with a  decent heuristic approach, 
no matter what optimization objective we select. 
In Listing 60.1, I’ve applied the popular heuristic of choosing as the splitter at each 
node the surface that splits the fewest  of the other surfaces that are being consid- 
ered for that  node.  In  other words, I choose the wall that splits the fewest  of the walls 
in the subspace it’s subdividing. 

BSP Optimization:  an  Undiscovered  Country 
Although BSP trees have been  around for at least 15 years now, they’re still only 
partially understood and are a  ripe area for applied research and general ingenuity. 
You might want to try your hand  at inventing new BSP optimization approaches; it’s 
an interesting problem, and you might strike  paydirt. There  are many things that 
BSP trees can’t do well, because it takes so long to build them-but  what  they do, 
they do exceedingly  well, so a better compilation approach that allowed BSP trees to 
be used for more purposes would be valuable, indeed. 
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