Reading VGA
Memory

Well; it’s taken five

four write modes of A D

While the read mode n’tas complex as the write modes, they’re nothing to sneeze
at, In particular, read mode 1 (also known as color compare mode) is rather unusual
and not at all intuitie.

You may well as
Well..no:B
of the book is all a

1sn’t anything about programming the VGA straightforward?
, clearing up the mysteries of VGA programming is what this part
Qut, so let’s get started.

Read Mode O

Read mode 0 is actually relatively uncomplicated, given that you understand the
four-plane nature of the VGA. (If you don’t understand the four-plane nature of the
VGA, I strongly urge you to read Chapters 23-27 before continuing with this chap-
ter.) Read mode 0, the read mode counterpart of write mode 0, lets you read from
one (and only one) plane of VGA memory at any one time.

Read mode 0 is selected by setting bit 3 of the Graphics Mode register (Graphics
Controller register 5) to 0. When read mode 0 is active, the plane that supplies the
data when the CPU reads VGA memory is the plane selected by bits 1 and 0 of the

525

Read Map register (Graphics Controller register 4). When the Read Map register is
set to 0, CPU reads come from plane 0 (the plane that normally contains blue pixel
data). When the Read Map register is set to 1, CPU reads come from plane 1; when
the Read Map register is 2, CPU reads come from plane 2; and when the Read Map
register is 3, CPU reads come from plane 3.

That all seems simple enough; in read mode 0, the Read Map register acts as a selec-
tor among the four planes, determining which one of the planes will supply the
value returned to the CPU. There is a slight complication, however, in that the value
written to the Read Map register in order to read from a given plane is not the same
as the value written to the Map Mask register (Sequence Controller register 2) in
order to write to that plane.

Why is that? Well, in read mode 0, one and only one plane can be read at a time, so
there are only four possible settings of the Read Map register: 0, 1, 2, or 3, to select
reads from plane 0, 1, 2, or 3. In write mode 0, by contrast (in fact, in any write
mode), any or all planes may be written to at once, since the byte written by the CPU
can “fan out” to multiple planes. Consequently, there are not four but sixteen pos-
sible settings of the Map Mask register. The setting of the Map Mask register to write
only to plane 0 is 1; to write only to plane 1 is 2; to write only to plane 2 is 4; and to
write only to plane 3 is 8.

As you can see, the settings of the Read Map and Map Mask registers for accessing a
given plane don’t match. The code in Listing 28.1 illustrates this. Listing 28.1 simply
copies a sixteen-color image from system memory to VGA memory, one plane at a time,
then animates by repeatedly copying the image back to system memory, again one
plane at a time, clearing the old image, and copying the image to a new location in
VGA memory. Note the differing settings of the Read Map and Map Mask registers.

LISTING 28.1 L28-1.ASM

; Program to illustrate the use of the Read Map register in read mode 0.
; Animates by copying a 16-color image from VGA memory to system memory,
; one plane at a time, then copying the image back to a new Tocation
; in VGA memory.
s By Michael Abrash
stack segment word stack 'STACK'
db 512 dup (?)
stack ends

data segment word °'DATA'

IMAGE_WIDTHEQU 4 ;in bytes

IMAGE_HEIGHT EQU 32 ;in pixels

LEFT_BOUND EQU 10 ;in bytes

RIGHT_BOUND EQU 66 ;in bytes

VGA_SEGMENT EQU 0a000h

SCREEN_WIDTH EQU 80 ;in bytes

SC_INDEX EQU 3c4h ;Sequence Controller Index register
GC_INDEX EQU 3ceh ;Graphics Controller Index register

526 Chapter 28

MAP_MASK EQU
READ_MAP EQU

,

2 ;Map Mask register index in SC
4 ;Read Map register index in GC

; Base pattern for 1l6-color image.

PatternPlanel

label byte

db 32 dup (0ffh,0ffh,0,0)

PatternPlanel

Tabel byte

db 32 dup (0ffh,0,0ffh,0)

PatternPlane2

label byte

db 32 dup (0f0h,0f0h,0f0h,0f0h)

PatternPlane3d

label byte

db 32 dup (Occh,0cch,0cch,0cch)

,

; Temporary storage for 16-color image during animation.

ImagePlane0 db
ImagePlanel db
ImagePlane2 db
ImagePlane3 db

32*4 dup (?)
32*4 dup (?)
32*4 dup (?)
32%4 dup (?)

; Current image location & direction.

ImageX

ImageY
ImageXDirection
data ends

code segment
assume

Start proc near
cld

dw 40 ;in bytes
dw 100 ;in pixels
dw 1 ;in bytes
word 'CODE"

cs:code,ds:data

mov ax,data

mov ds,ax

; Select graphics mode 10h.

mov ax,10h

int 10h

; Draw the initial image.

mov si,offset PatternPianel
call Drawlmage

; Loop to animate by copying the image from VGA memory to system memory,
; erasing the image, and copying the image from system memory to a new

; location in VGA memory. Ends when a key is hit.

Animateloop:

H

; Copy the image from VGA memory to system memory.

mov di,offset ImagePlane(
call Getlmage

; Clear the image from VGA memory.

call Eraselmage

Reading VGA Memory 527

; Advance the image X coordinate, reversing direction if either edge
; of the screen has been reached.
mov ax,[ImageX]
cmp ax,LEFT_BOUND
jz ReverseDirection
cmp ax,RIGHT_BOUND
jnz SetNewX
ReverseDirection:
neg [ImageXDirection]
SetNewX:
add ax,[ImageXDirection]
mov [ImageX],ax
; Draw the image by copying it from system memory to VGA memory.
mov si,offset ImagePlane0
call Drawlmage

; Slow things down a bit for visibility (adjust as needed).
mov ¢x,0

DelayLoop:
lToop Delayloop

; See if a key has been hit, ending the program.

mov ah,l
int 16h
jz Animateloop

; Clear the key, return to text mode, and return to DOS.

sub ah,ah
int 16h
mov ax,3
int 10h
mov ah,4ch
int 21h

Start endp
; Draws the image at offset DS:SI to the current image location in
; VGA memory.

DrawImage proc near
mov ax,VGA_SEGMENT
mov es,ax
call GetImageOffset ;ES:DI is the destination address for the
; image in VGA memory
mov dx,SC_INDEX

mov al,l ;do plane 0 first
DrawImagePlaneLoop:
push di ;image is drawn at the same offset in
; each plane
push ax ;preserve plane select
mov al,MAP_MASK ;Map Mask index
out dx,al ;point SC Index to the Map Mask register
pop ax ;get back plane select
inc dx ;point to SC index register

528 Chapter 28

out dx,al ;set up the Map Mask to allow writes to
; the plane of interest

dec dx ;point back to SC Data register

mov bx,IMAGE_HEIGHT :# of scan lines in image

DrawImagelLoop:

mov cx,IMAGE_WIDTH ;#F of bytes across image

rep movsb

add di,SCREEN_WIDTH-IMAGE_WIDTH
ipoint to next scan line of image

dec bx ;any more scan lines?

jnz DrawlImageloop

pop di iget back image start offset in VGA memory

shl al,l ;Map Mask setting for next plane

cmp al,l10h ihave we done all four planes?

jnz DrawlmagePlaneloop

ret

endp

Drawlmage

; Copies the image from its current location in VGA memory into the

buffer at DS:DI.

GetImage

proc near
mov si,di ;move destination offset into SI
call GetlImageOffset ;DI is offset of image in VGA memory
xchg si,di ;SI is offset of image, DI is destination offset
push ds
pop es ;ES:DI is destination
mov ax,VGA_SEGMENT
mov ds,ax ;:DS:SI is source
mov dx,GC_INDEX
sub al,al ;do plane 0 first
GetImagePlaneloop:
push si ;image comes from same offset in each plane
push ax ;preserve plane select
mov al,READ_MAP ;Read Map index
out dx,al ;point GC Index to Read Map register
pop ax ;get back plane select
inc dx ;point to GC Index register
out dx,al ;set up the Read Map to select reads from
; the plane of interest
dec dx ;point back to GC data register
mov bx,IMAGE_HEIGHT ;# of scan lines in image
GetImageLoop:
mov cx,IMAGE_WIDTH :# of bytes across image
rep movsb
add si,SCREEN_WIDTH-IMAGE_WIDTH
;point to next scan line of image
dec bx ;any more scan lines?
jnz GetImageloop
pop si ;get back image start offset
inc al ;Read Map setting for next plane
cmp al,é4 ;have we done all four planes?
jnz GetImagePlanelLoop
push es
pop ds ;restore original DS
ret
GetImage endp

H
N
N

N

Erases the image at its current location.

Reading VGA Memory

529

Eraselmage proc near
mov dx,SC_INDEX
mov al,MAP_MASK

out dx,al ;point SC Index to the Map Mask register

inc dx ;point to SC Data register

mov al,0fh

out dx,al ;set up the Map Mask to allow writes to go to

; all 4 planes
mov ax,VGA_SEGMENT
mov es,ax
call GetImageOffset ;ES:DI points to the start address
; of the image

sub al,al ;erase with zeros
mov bx,IMAGE_HEIGHT ;# of scan lines in image
Eraselmageloop:

mov cx,IMAGE_WIDTH ;# of bytes across image
rep stosb
add di,SCREEN_WIDTH-IMAGE_WIDTH

;point to next scan 1ine of image

dec bx ;any more scan Tlines?
jnz Eraselmageloop
ret

Eraselmage endp

; Returns the current offset of the image in the VGA segment in DI.

GetImageOffset proc near
mov ax,SCREEN_WIDTH
mul [ImageY]
add ax,[ImageX]
mov di,ax
ret

GetImageOffset endp

code ends
end Start

By the way, the code in Listing 28.1 is intended only to illustrate read mode 0, and is,
in general, a poor way to perform animation, since it’s slow and tends to flicker.
Later in this book, we’ll take a look at some far better VGA animation techniques.

As you'd expect, neither the read mode nor the setting of the Read Map register
affects CPU writes to VGA memory in any way.

(Remember that each of the four latches stores a byte for one plane; on CPU
writes, the latches can provide some or all of the data written to display memory,
allowing fast copying and efficient pixel masking.) Whenever the CPU reads a
given address in VGA memory, each of the four latches is loaded with the contents
of the byte at that address in its respective plane. Even though the CPU only re-
ceives data from one plane in read mode 0, all four planes are always read, and
the values read are stored in the latches. This is true in read mode 1 as well. In
short, whenever the CPU reads VGA memory in any read mode, all four planes are
read and all four latches are always loaded.

“p An important point regarding reading VGA memory involves the VGA's latches.

530 Chapter 28

Read Mode 1

Read mode 0 is the workhorse read mode, but it’s got an annoying limitation: When-
ever you want to determine the color of a given pixel in read mode 0, you have to
perform four VGA memory reads, one for each plane, and then interpret the four
bytes you’ve read as eight 16-color pixels. That’s a lot of programming. The code is
also likely to run slowly, all the more so because a standard IBM VGA takes an aver-
age of 1.1 microseconds to complete each memory read, and read mode 0 requires
four reads in order to read the four planes, not to mention the even greater amount
of time taken by the OUTs required to switch between the planes. (1.1 microseconds
may not sound like much, but on a 66-MHz 486, it’s 73 clock cycles! Local-bus VGAs
can be a good deal faster, but a read from the fastest local-bus adapter I've yet seen
would still cost in the neighborhood of 10 486/66 cycles.)

Read mode 1, also known as color compare mode, provides special hardware assistance
for determining whether a pixel is a given color. With a single read mode 1 read, you
can determine whether each of up to eight pixels is a specific color, and you can
even specify any or all planes as “don’t care” planes in the pixel color comparison.

Read mode 1 is selected by setting bit 3 of the Graphics Mode register (Graphics
Controller register 5) to 1. In its simplest form, read mode 1 compares the cross-
plane value of each of the eight pixels at a given address to the color value in bits 3-0
of the Color Compare register (Graphics Controller register 2), and returns a 1 to
the CPU in the bit position of each pixel that matches the color in the Color Com-
pare register and a 0 for each pixel that does not match.

That’s certainly interesting, but what’s read mode 1 good for? One obvious applica-
tion is in implementing flood-fill algorithms, since read mode 1 makes it easy to tell
when a given byte contains a pixel of a boundary color. Another application is in
detecting on-screen object collisions, as illustrated by the code in Listing 28.2.

LISTING 28.2 L28-2.ASM

; Program to illustrate use of read mode 1 (color compare mode)

; to detect collisions in display memory. Oraws a yellow line on a
; blue background, then draws a perpendicular green 1ine until the
; yellow line is reached.

; By Michael Abrash

stack segment word stack 'STACK’
db 512 dup (?)

stack ends

VGA_SEGMENT EQU 0a000h

SCREEN_WIDTH EQU 80 ;in bytes

GC_INDEX EQU 3ceh ;Graphics Controller Index register
SET_RESET EQU O ;Set/Reset register index in GC
ENABLE SET RESET EQU 1 ;Enable Set/Reset register index in GC
COLOR_COMPARE EQu 2 ;Color Compare register index in GC
GRAPHICS_MODE EQU 5 ;Graphics Mode register index in GC

BIT MASK EQU 8 ;Bit Mask register index in GC

Reading VGA Memory 531

532

code segment word 'CODE’

assume cs:code
Start proc near
cld

; Select graphics mode 10h.

mov ax,10h
int 10h

; Fi11 the screen with blue.

mov al,l ;blue is color 1
call SelectSetResetColor ;set to draw in blue
mov ax,VGA_SEGMENT

mov es,ax

sub di,di
mov ¢x,7000h
rep stosb ;the value written actually doesn't

; matter, since set/reset is providing
; the data written to display memory
s Oraw a vertical yellow line.
mov al,14 : ;yellow is color 14
call SelectSetResetColor ;set to draw in yellow
mov dx,GC_INDEX
mov al,BIT_MASK

out dx,al ;point GC Index to Bit Mask
inc dx ;point to GC Data
mov al,10h
out dx,al ;set Bit Mask to 10h
mov di, 40 ;start in the middie of the top line
mov ¢x,350 ;do full height of screen
VLineLoop:
mov al,es:[di] ;load the latches
stosb ;write next pixel of yellow line (set/reset

; provides the data written to display
; memory, and AL is actually ignored)
add di,SCREEN_WIDTH-1 ;point to the next scan line
loop VLinelLoop
; Select write mode 0 and read mode 1.
mov dx,GC_INDEX
mov al,GRAPHICS_MODE

out dx,al ;point GC Index to Graphics Mode register
inc dx ;point to GC Data
mov al,00001000b ;bit 3=1 is read mode 1, bits 1 & 0=00
; is write mode 0
out dx,al ;set Graphics Mode to read mode 1,

; write mode 0
; Draw a horizontal green line, one pixel at a time, from left
; to right until color compare reports a yellow pixel is encountered.
; Draw in green.
mov al,2 ;green is color 2
call SelectSetResetColor ;set to draw in green

Chapter 28

; Set color compare to look for yellow.

mov dx,GC_INDEX
mov al,COLOR_COMPARE

out dx,al ipoint GC Index to Color Compare register
inc dx ipoint to GC Data

mov al,l4 ;we're looking for yellow, color 14

out dx,al 1set color compare to look for yellow

dec dx ipoint to GC Index

; Set up for quick access to Bit Mask register.

mov al,BIT_MASK
out dx,al ;point GC Index to Bit Mask register
inc dx ;point to GC Data

; Set initial pixel mask and display memory offset.

mov al,80h ;initial pixel mask
mov di,100*SCREEN_WIDTH
;start at left edge of scan line 100
HLineloop:
mov ah,es:[di] ;do a read mode 1 (color compare) read.
; This also loads the latches.

and ah,al ;is the pixel of current interest yellow?

jnz WaitKeyAndDone ;yes-we've reached the yellow line, so we're
; done

out dx,al ;set the Bit Mask register so that we

; modify only the pixel of interest
mov es:[di]J,al ;draw the pixel. The value written is
; irrelevant, since set/reset is providing
; the data written to display memory
ror al,l ;shift pixel mask to the next pixel
adec di,0 ;advance the display memory offset if
; the pixel mask wrapped
; Slow things down a bit for visibility (adjust as needed).
mov ¢x,0
DelaylLoop:
Toop Delayloop

jmp HLineloop
; Wait for a key to be pressed to end, then return to text mode and
; return to DOS.

WaitKeyAndDone:
WaitKeyLoop:
mov ah,1
int 16h
Jjz WaitKeyloop
sub ah,ah
int 16h ;clear the key
mov ax,3
int 10h ;return to text mode
mov ah,4ch
int 21h ;done
Start endp

Reading VGA Memory

533

; Enables set/reset for all planes, and sets the set/reset color

; to AL.
SelectSetResetColor proc near
mov dx,GC_INDEX
push ax ;preserve color
mov al,SET_RESET
out dx,al ;point GC Index to Set/Reset register
inc dx ;point to GC Data
pop ax :get back color
out dx,al ;set Set/Reset register to selected color
dec dx ;point to GC Index
mov al,ENABLE SET_RESET
out dx,al ;point GC Index to Enable Set/Reset register
inc dx ;point to GC Data
mov al,0fh
out dx,al ;enable set/reset for all planes
ret
SelectSetResetColor endp
code ends
end Start

When all Planes “Don’t Care”

Still and all, there aren’t all that many uses for basic color compare operations. There
is, however, a genuinely odd application of read mode 1 that’s worth knowing about;
but in order to understand that, we must first look at the “don’t care” aspect of color
compare operation.

As described earlier, during read mode 1 reads the color stored in the Color Compare
register is compared to each of the 8 pixels at a given address in VGA memory. But—
and it’s a big but—any plane for which the corresponding bit in the Color Don’t
Care register is a 0 is always considered a color compare match, regardless of the
values of that plane’s bits in the pixels and in the Color Compare register.

Let’s look at this another way. A given pixel is controlled by four bits, one in each
plane. Normally (when the Color Don’t Care register is 0FH), the color in the Color
Compare register is compared to the four bits of each pixel; bit 0 of the Color Compare
register is compared to the plane 0 bit of each pixel, bit 1 of the Color Compare register
is compared to the plane 1 bit of each pixel, and so on. That is, when the lower four
bits of the Color Don’t Care register are all set to 1, then all four bits of a given pixel
must match the Color Compare register in order for a read mode 1 read to return a
1 for that pixel to the CPU.

However, if any bit of the Color Don’t Care register is 0, then the corresponding bit
of each pixel is unconditionally considered to match the corresponding bit of the
Color Compare register. You might think of the Color Don’t Care register as select-
ing exactly which planes should matter in a given read mode 1 read. At the extreme,
if all bits of the Color Don’t Care register are 0, then read mode 1 reads will always
return OFFH, since all planes are considered to match all bits of all pixels.

534 Chapter 28

Now, we’re all prone to using tools the “right” way—that is, in the way in which they
were intended to be used. By that token, the Color Don’t Care register is clearly intended
to mask one or more planes out of a color comparison, and as such, has limited use.
However, the Color Don’t Care register becomes far more interesting in exactly the
“extreme” case described above, where all planes become “don’t care” planes.

Why? Well, as I've said, when all planes are “don’t care” planes, read mode 1 reads
always return OFFH. Now, when you AND any value with OFFH, the value remains
unchanged, and that can be awfully handy when you’re using the bit mask to modify
selected pixels in VGA memory. Recall that you must always read VGA memory to
load the latches before writing to VGA memory when you’re using the bit mask.
Traditionally, two separate instructions—a read followed by a write—are used to per-
form this task. The code in Listing 28.2 uses this approach. Suppose, however, that
you've set the VGA to read mode 1, with the Color Don’t Care register set to 0 (mean-
ing all reads of VGA memory will return OFFH). Under these circumstances, you can
use a single AND instruction to both read and write VGA memory, since ANDing any
value with OFFH leaves that value unchanged.

Listing 28.3 illustrates an efficient use of write mode 3 in conjunction with read
mode 1 and a Color Don’t Care register setting of 0. The mask in AL is passed di-
rectly to the VGA’s bit mask (that’s how write mode 3 works—see Chapter 4 for details).
Because the VGA always returns 0FFH, the single AND instruction loads the latches,
and writes the value in AL, unmodified, to the VGA, where it is used to generate the
bit mask. This is more compact and register-efficient than using separate instruc-
tions to read and write, although it is not necessarily faster by cycle count, because
on a 486 or a Pentium MOV is a 1-cycle instruction, but AND with memory is a 3-
cycle instruction. However, given display memory wait states, it is often the case that
the two approaches run at the same speed, and the register that the above approach
frees up can frequently be used to save one or more cycles in any case.

By the way, Listing 28.3 illustrates how write mode 3 can make for excellent pixel-
and line-drawing code.

LISTING 28.3 L28-3.ASM

Program that draws a diagonal line to illustrate the use of a
; Color Don't Care register setting of OFFH to support fast
; read-modify-write operations to VGA memory in write mode 3 by
; drawing a diagonal line,
; Note: Works on VGAs only.
; By Michael Abrash

stack segment word stack 'STACK'

db 512 dup (?)
stack ends
VGA_SEGMENT EQU 0a000h
SCREEN_WIDTH EQU 80 ;in bytes

Reading VGA Memory 535

GC_INDEX EQU 3ceh ;Graphics Controller Index register
SET_RESET EQU 0 ;Set/Reset register index in GC
ENABLE_SET_RESET EQU 1 ;Enable Set/Reset register index in GC
GRAPHICS_MODE EQU 5 ;Graphics Mode register index in GC
COLOR_DONT_CARE EQU 7 ;Color Don't Care register index in GC

code segment word 'CODE'
assume cs:code
Start proc near
; Select graphics mode 12h.
mov ax,12h
int 10h
; Select write mode 3 and read mode 1.
mov dx,GC_INDEX
mov al,GRAPHICS_MODE

out dx,al
inc dx
in al,dx ;VGA registers are readable, bless them!
or al,00001011b ;bit 3=1 selects read mode 1, and

; bits 1 & 0=11 selects write mode 3
jmp $+2 ;delay between IN and OUT to same port
out dx,al
dec dx

; Set up set/reset to always draw in white.

mov al,SET_RESET

out dx,al
inc dx

mov al,0fh
out dx,al
dec dx

mov al,ENABLE_SET_RESET
out dx,al
inc dx

mov al,0fh
out dx,al
dec dx

; Set Color Don't Care to 0, so reads of VGA memory always return OFFH.

mov al,COLOR_DONT_CARE

out dx,al
inc dx

sub al,al
out dx,al

; Set up the initial memory pointer and pixel mask.
mov ax,VGA_SEGMENT
mov ds,ax
sub bx,bx
mov al,80h

; Draw 400 points on a diagonal line sloping down and to the right.

536 Chapter 28

mov cx,400
DrawDiagonalloop:
and [bx],al ;reads display memory, loading the latches,
; then writes AL to the VGA. AL becomes the
; bit mask, and set/reset provides the
; actual data written
add bx,SCREEN_WIDTH
; point to the next scan Tine
ror al,l ;move the pixel mask one pixel to the right
adc bx,0 ;advance to the next byte if the pixel mask wrapped
lToop DrawDiagonalloop
; Wait for a key to be pressed to end, then return to text mode and
; return to DOS.

WaitKeyLoop:

mov ah,l
int 16h
jz WaitKeyLoop
sub ah,ah
int 16h ;clear the key
mov ax,3
int 10h ;return to text mode
mov ah,4ch
int 21h ;done
Start endp
code ends
end Start

I hope I've given you a good feel for what color compare mode is and what it might
be used for. Color compare mode isn’t particularly easy to understand, but it’s not
that complicated in actual operation, and it’s certainly useful at times; take some
time to study the sample code and perform a few experiments of your own, and you
may well find useful applications for color compare mode in your graphics code.

A final note: The Read Map register has no effect in read mode 1, and the Color
Compare and Color Don’t Care registers have no effect either in read mode 0 or
when writing to VGA memory. And with that, by gosh, we’re actually done with the
basics of accessing VGA memory!

Not to worry—that still leaves us a slew of interesting VGA topics, including smooth
panning and scrolling, the split screen, color selection, page flipping, and Mode X.
And that’s not to mention actual uses to which the VGA’s hardware can be put, in-
cluding lines, circles, polygons, and my personal favorite, animation. We’ve covered
a lot of challenging and rewarding ground—and we’ve only just begun.

Reading VGA Memory 537

	next:
	home:
	previous:

