

When I was in hi& school, my gym teacher had us run a race around the soccer
field, or rather, arotiNd a course marked with cones that roughly outlined the shape
of the field. I quickly s d into second place behind Dwight Chamberlin. We cruised
around the field, and &We came to the far corner, Dwight cut across the corner,
inside a cone placed dkwardly far out from the others. I followed, and everyone else
cut inside the cone t$o-except the pear-shaped kid bringing up the rear, who plod-
ded his way around kvery single cone on his way to finishing about half a lap behind.
When the laggar&&nally crossed the finish line, the coach named him the winner, to
my considCE%#&rj@itation. After all, the object was to see who could run the fastest,
wasn’t it?
Actually, it wasn’t. The object was to see who could run the fastest according to the
limitations placed upon the contest. This is a crucial distinction, although usually
taken for granted. Would it have been legitimate if I had cut across the middle of the
field? If I had ridden a bike? If I had broken the world record for the 100 meters by
dropping 100 meters from a plane? Competition has meaning only within a carefully
circumscribed arena.
Why am I telling you this? First, because it is a useful lesson for programming.

,_x I n 8 .

All programming is performed within limitations, some of which can be bent or p changed, but many of which cannot. You cannot change the maximum memory
bandwidth ofa VGA, or the maximum instruction execution rate o f a 486. That is

349

optimization beyond the pale

why the stunning 3 0 demos you see at SIGGRAPH have onlypassing relevance to
everyday life on the desktop. A rule that Intel5 chip designers cannot break is
8086 compatibility, much as I’m sure theya like to, but of course the pip side is
that although RISC chips are technically superiol; they command but a small fraction
of the market: rawperformance is not the arena of competition. Similarly, you will
ofen be unable to change the speczjications for the software you implement.

Breaking the Rules
-

The other reason for the anecdote has to do with the way my second Optimization
Challenge worked itself out. If you’ll recall from the last chapter, the challenge I made
to the readers of PC TECHNIQLES was to devise the fastest possible version of the
Game of Life cellular automata simulation game. I gave an example, laid out the rules,
and stood aside. Good thing, too. Apres moi, le deluge.. . .
And when the dust had settled, I was left with the uneasy realization that every submitted
entry broke the rules. Every single entry. The rules clearly stated that submitted code must
produce exactly the same output as my example implementation under all circumstances
in order to be eligible to win. I do not think that there can be any question about what
“exactly the same output” means. It means the same pixels, in the same colors, at the
same places on the screen at the same points in all the Life simulations that the origi-
nal code was capable of running. Period. And not one of the entries met that standard.
Some submitted listings were more than 400 lines long. Some didn’t display the gen-
eration number at the right side of the screen, didn’t draw the same pixel colors, or
didn’t bother with magnification. Some had bugs. Some didn’t support all possible
cellmap widths and heights up to 200x200, requiring widths and heights that were
specific multiples of a number of cells that lent itself to a particular implementation.
This last mission is, in a way, a brilliant approach, as evidenced by the fact that it yielded
the two fastest submissions, but it is not within the rules of the contest. Some of the
rule-breaking was major, some very minor, and some had nothing to do with the Life
engine itself, but the rules were clear; where was I to draw the line if not with exact
compliance? And I was fully prepared to draw that line rigorously, disqualifjmg some
mind-bending submissions in order to let lesser but fully compliant entries win-until
I realized that there were no fully compliant entries.
Given which, I heaved a sigh of relief, threw away the rules, and picked a winner in
the true spirit of the contest: raw speed. Two winners, in fact: Peter Klerings, a pro-
grammer for Turck GmbH in Munich, Germany, whose entry just plain runs like a
bat out of hell, and David Stafford (who was also the winner of my first Optimization
Challenge), of Borland International, whose entry is slightly slower mainly because
he didn’t optimize the drawing part of the program, in full accordance with the
contest rules, which specifically excluded drawing time from consideration. Unfor-
tunately, Peter’s generation code and drawing code are so tightly intertwined that it
is impossible to separate them, and hence not really possible to figure out whose

350 Chapter 18

generation engine is faster. Anyway, at 180 to 200 generations per second, including
drawing time, for 200x200 cellmaps (and in the neighborhood of lOOOgps for 96x96
cellmaps, the size of my original implementation), they’re the fastest submissions I
received. They’re both more than an order of magnitude faster than my final opti-
mized c++ Life implementation shown in Chapter 17, and more than 300 times
faster than my original, perfectly functional Life implementation. Not 300 percent-
300 times. Cell generations scud across the screen like clouds, and walkers shoot out
like bullets. Each is a worthy winner, and I feel confident that the true objective of
the challenge has been met: pure, breathtaking speed.
Notwithstanding, mea culpa. The next time I lay a challenge, I will define the rules
with scrupulous care. Even so, this was much more than just another cycle-counting
contest. We’re fortunate enough to be privy to a startling demonstration of the power
of the best optimizer anyone has yet devised-you. (That’s the general “you”; I real-
ize that the specific “you” may or may not be quite up to the optimizing level of the
specific “David Stafford” or “Peter Klerings.”)
Onward to the code.

Table-Driven Magic
David Stafford won my first Optimization Challenge by means of a huge look-up
table and an incredible state machine driven by that table. The table didn’t cause
David’s entry to exceed the line limit because David’s submission included code to
generate the table on the fly as part of the build process. David has done himself one
better this time with his QLIFE program; not only does his build process generate a
64K table, but it also generates virtually all his code, consisting of 17,000-plus lines of
assembly language spanning another 64K. What David has done is write the equiva-
lent of a bitblt compiler for the Game of Life; one might in fact call it a Life compiler.
What David’s code generates is still a general-purpose program; it takes arbitrary
seed values, and can run for an arbitrary number of generations, so it’s not as if David
simply hardwired the instructions to draw each successive screen. However, it’s a
general-purpose program that is exquisitely tailored to the task it needs to perform.
All the pieces of QLIFE are shown in Listings 18.1 through 18.5, as follows: Listing
18.1 is BUILD.BAT, the batch file used to build QLIFE; Listing 18.2 is LCOMP.C, the
program used to generate the assembler code and data file QLIFE.ASM; Listing 18.3
is MAIN.C, the main program for QLIFE; Listing 18.4 is VIDEO.C, the video-related
functions, and Listing 18.5 is LIFE.H, the header file. The following sidebar contains
David’s build instructions, exactly as he wrote them. I certainly won’t have room to
discuss all the marvelous intricacies of David’s code; I suggest you look over these
listings until you understand them thoroughly (it took me a day to pick them apart)
because there’s a lot of neat stuff in there, and it’s an approach to performance
programming that operates at a more efficient, tightly integrated level than you may
ever see again. One hint: It helps a lotto build and run LCOMP.C, redirect its output

It’s a Wonderful Life 351

is of
and to with-

LISTING 1 8.1 BUILD.BAT
bcc - v -D%1=%2;%2=%3:%3=%4;%4-%5:%5=%6:%6-%7:%7=%8;%8 1comp.c
lcomp > q l i f e . a s m
tasmx Imx lkh30000 q l i f e
b c c - v -D%1=%2:%2-%3;%3=%4:%4=%5;%5-%6:%6-%7;%7-%8:%8 q l i f e . o b j m a i n . c v i d e 0 . c

LISTING 18.2 LC0MP.C
I / LC0MP.C
/ I
/ / L i f e c o m p i l e r . v e r 1.3
/ I
/ I D a v i d S t a f f o r d
/ I

352 Chapter 18

i n c l u d e < s t d i o . h >
i n c l u d e < s t d l i b. h>
#i n c l ude "1 i f e . h "

#def ine L IST-LIMIT (46 * 138) / / when we need t o use es:

i n t Old. New, Edge, L a b e l :
char Buf [20 1;

v o i d N e x t l (v o i d)

I
char *Seg - "";
i f (WIDTH * HEIGHT > LIST-LIMIT) Seg - "es:" ;

p r i n t f ("mov b p . % s [s i] \ n " . Seg) ;
p r i n t f ("add s i .2 \n") :
p r i n t f ("mov dh . [bp+ l] \ n " 1:
p r i n t f ("and dh,OFEh\n" 1;
p r i n t f (" jmp dx\n") :
>

v o i d N e x t 2 (v o i d 1
(
p r i n t f ("mov b p . e s : [s i l \ n " 1;
p r i n t f ("add s i . 2 \n " 1:
p r i n t f ("mov dh .Cbp+ l l \ n ") :
p r i n t f ("or d h . l \ n ") :
p r i n t f (" jmp dx\n" 1:
1

v o i d B u i l d M a p s (v o i d)

I
u n s i g n e d s h o r t i. j. S i z e , x - 0. y . N1 . N2. N3. C 1 . C2. C3:

p r i n t f ("-DATA segment 'DATA' \na l ign 2 \n" 1:
p r i n t f (" p u b l i c - C e l l M a p \ n " 1:
p r i n t f (" -Ce l lMap labe l word \n") :

f o r (j - 0; j < HEIGHT: j++)

(
f o r (i - 0; i < WIDTH; i++

I
i f (i - 0 I I i - WIDTH-1 I I j -- 0 I I j - HEIGHT-1)

(
p r i n t f ("dw 8000h\n") :

1
e l s e

(
p r i n t f ("dw O\n") :

1
I

1

p r i n t f ("ChangeCell dw O\n") :
p r i n t f ("_RowColMap l a b e l w o r d \ n " 1:

It's a Wonderful Life 353

- 0; j < HEIGHT: j++ 1

i - 0: i < WIDTH: i++)

, i n t f ("dw 0%02x%02xh\n". j . i * 3) :

i f (WIDTH * HEIGHT > LIST-LIMIT)

I
p r i n t f ("Changel dw o f f s e t -CHANGE:-ChangeListl\n") :
p r i n t f ("Change2 dw o f f s e t -CHANGE:-ChangeList2\n") :
p r i n t f (" e n d s \ n \ n ") :
p r i n t f ('"CHANGE segment para publ ic 'FAR_DATA'\n" 1:
1

e l s e
{
p r i n t f (" C h a n g e l dw o f f s e t DGR0UP:-ChangeListl\n") :
p r i n t f ("Change2 dw o f f s e t DGROUP:-ChangeListZ\n") :

1

S i z e - WIDTH * HEIGHT + 1:

p r i n t f (" p u b l i c -ChangeListl\n_ChangeListl l a b e l w o r d \ n " 1:
p r i n t f ("dw %d dup (o f f s e t DGROUP:ChangeCell)\n", Size) :
p r i n t f (" p u b l i c _ C h a n g e L i s t Z \ n - C h a n g e L i s t Z l a b e l w o r d \ n ") :
p r i n t f ("dw %d dup (o f f s e t DGROUP:ChangeCell)\n". S i z e) :
p r i n t f (" e n d s \ n \ n ") :

p r i n t f ("-LDMAP s e g m e n t p a r a p u b l i c 'FAR-DATA'\n") :

do
I
/ / C u r r e n t c e l l s t a t e s
c 1 - (x & 0x0800) >> 11;
C2 - (X & 0x0400) >> 10:
c3 - (x & 0x0200) >> 9;

/ / Ne ighbor coun ts
N 1 - (X & OxOlCO) >> 6:
N2 - (X & 0x0038) >> 3 ;
N3 - (x & 0x0007) :

y - x & Ox8FFF: / / P r e s e r v e a l l b u t t h e n e x t g e n e r a t i o n s t a t e s

i f (C 1 && ((N 1 + C2 -- 2) 1) (N 1 + C2 - 3)))

I
y 1 - 0x4000:
1

i f (! C 1 && (N 1 + C2 - 3))
I
y 1 - 0x4000:
1

if(C2 && ((N2 + C 1 + C3 -- 2) 1 1 (N2 + C 1 + C3 - 3)))
{

1
y 1 - 0x2000:

354 Chapter 18

i f (!C2 && (N2 + C 1 + C3 - 3))

(
y 1 - 0x2000;
I

v o i d GetUpAndDown(v o i d)

(
p r i n t f ("mov ax.[bp+~RowColMap-~CellMapl\n") :
p r i n t f (" o r a h , a h \ n ") :
p r i n t f ("mov dx.%d\n", DOWN) :
p r i n t f ("mov cx.%d\n". WRAPUP) :
p r i n t f (" j z shor t D%d\n" , Labe l) :
p r i n t f ("cmp ah.%d\n" . HEIGHT - 1) :
p r i n t f ("mov cx .%d\n " . UP 1:
p r i n t f (" j b s h o r t D%d\n". Label 1:
p r i n t f ("mov dx,%d\n" . WRAPDOWN) :
p r i n t f ("D%d:\n", Label) :
I

v o i d F i r s t p a s s (v o i d)

(
cha r *Op;
u n s i g n e d s h o r t UpDown - 0:

p r i n t f (" o r g 0%02xOOh\n". (Edge << 7) + (New << 4) + (O l d << 1)) :

/ / r e s e t c e l l
p r i n t f (" x o r b y t e p t r [b p + l l , 0 % 0 2 x h \ n " . (New A O l d) << 1) :

/ / g e t t h e s c r e e n a d d r e s s a n d u p d a t e t h e d i s p l a y
#i f n d e f NOORAW
p r i n t f ("mov a1 .160\n") :
p r i n t f ("mov bx,[bp+-RowColMap-~CellMapl\n" 1:
p r i n t f ("mu1 bh \n " 1:
p r i n t f ("add ax.ax\n") :
p r i n t f ("mov bh.O\n") :
p r i n t f ("add bx.ax\n" 1: / / bx - s c r e e n o f f s e t

i f (((New A O l d) & 6) - 6

p r i n t f ("mov word p t r f s : ~ b x] . 0 % 0 2 x % 0 2 x h \ n " .
(New & 2) ? 1 5 : 0,
(New & 4) ? 15 : 0 1;

It's a Wonderful Life 355

i f ((New A O l d) & 1)
(
p r i n t f ("mov b y t e p t r f s : C b x + 2 l . % s \ n " ,

1
(New & 1) ? "15" : " d l " 1:

1
e l s e

{
i f (((New A O l d) & 3) - 3)

I
p r i n t f ("mov word p t r f s : [b x + l] . 0 % 0 2 x % 0 2 x h \ n " .

(New & 1) ? 15 : 0.
(New & 2) ? 15 : 0) ;

1
e l s e

I
i f ((New A O l d) & 2)

(
p r i n t f ("mov b y t e p t r f s : C b x + l l . % s \ n " .

1
(New & 2) ? "15" : " d l " 1:

i f ((New A O l d) & 1
{
p r i n t f ("mov b y t e p t r f s : [b x + 2 1 . % s \ n " .

1
(New & 1) ? "15" : " d l ") :

1

i f ((New A O l d) & 4 1
I
p r i n t f c "mov b y t e p t r f s : [b x l . % s \ n " .

1
(New & 4) ? "15" : " d l ") ;

I
#end i f

i f ((New O l d) & 4) UpDown +- (New & 4) ? 0x48 : -0x48;
i f ((New A O l d) 8 2) UpDown +- (New & 2) ? 0x49 : -0x49;
i f ((New A O l d) & 1 UpDown +- (New & 1) ? Ox09 : -0x09;

i f (Edge)

(
GetUpAndDownO; / / ah - row, a1 - c o l . c x - up. dx - down

i f ((New A O l d) & 4)
(
p r i n t f ("mov d i . % d \ n " . WRAPLEFT 1: / I d i - l e f t
p r i n t f ("cmp a l .O\n" 1:
p r i n t f (" j e s h o r t L % d \ n " . L a b e l 1;
p r i n t f ("mov d i . % d \ n " . LEFT) ;
p r i n t f (" L % d : \ n " . L a b e l) ;

i f (New & 4 Op - " i n c " :
e l s e Op - "dec":

p r i n t f ("%s word p t r [b p + d i l \ n " . Op) ;
p r i n t f ("add d i . cx \n ") :
p r i n t f ("%s word p t r C b p + d i l \ n " . Op 1;
p r i n t f (" s u b d i . c x \ n " 1:

356 Chapter 18

p r i n t f ("add d i . dx \n ") :

p r i n t f (" % s word p t r [b p + d i l \ n " . Op) :
I

i f ((New A O l d) & 1 1
I
p r i n t f ("mov d i . % d \ n " . WRAPRIGHT 1: I1 d i = r i g h t
p r i n t f ("cmp a l . % d \ n " . (WIDTH - 1) * 3) :

p r i n t f (" j e s h o r t R%d\n", Label) :
p r i n t f ("mov d i . % d \ n " . RIGHT) :
p r i n t f ("R%d:\n". Label) ;

i f (New & 1 Op = "add":
e l s e Op = "sub".

p r i n t f ("%s word p t r [b p + d i l , 4 0 h \ n " . Op) :
p r i n t f ("add d i . cx \n " 1;
p r i n t f ("%s word p t r [b p + d i I , 4 0 h \ n " . Op) :
p r i n t f (" sub d i . cx \n ") ;
p r i n t f ("add d i . dx \n ") :
p r i n t f (" % s word p t r [b p + d i l , 4 0 h \ n " . Op 1 :
I

p r i n t f ("mov d i . c x \ n " 1:
p r i n t f ("add word p t r [bp+d i l .%d\n" . UpDown 1 :
p r i n t f ("mov d i . d x \ n " 1:
p r i n t f ("add word p t r [bp+d i I ,%d\n" . UpDown) :

p r i n t f ("mov d l .O\n" 1 :
1

e l s e
(
i f ((New O l d) & 4)

(
i f (New & 4 Op = " i n c " :
e l s e Op = "dec":

p r i n t f ("%s b y t e p t r [b p + % d l \ n " . Op. LEFT) :

p r i n t f ("%s b y t e p t r [b p + % d l \ n " . Op. UPPERLEFT) :

p r i n t f ("%s b y t e p t r [b p + % d l \ n " . Op, LOWERLEFT 1 ;

i f ((New A O l d) & 1)

I
i f (New & 1) Op = "add":
e l s e Op = "sub".

p r i n t f ("%s word p t r [bp+%dl.40h\n". Op. RIGHT) :
p r i n t f ("%s word p t r [bp+%d].40h\n". Op. UPPERRIGHT 1 :
p r i n t f ("%s word p t r [bp+%d].40h\n". Op. LOWERRIGHT) :

I

i f (abs(UpDown) > 1)

I
p r i n t f ("add word p t r [bp+%dl.%d\n". U P , UpDown) :
p r i n t f ("add word p t r [bp+%dl,%d\n". DOWN, UpDown) :

1
e l s e

t
i f (UpDown == 1) Op - " i n c " :
e l s e Op = "dec":

It's a Wonderful Life 357

p r i n t f ("%s b y t e p t r [bp+%d]\n". Op. UP 1;
p r i n t f ("%s b y t e p t r [b p + % d l \ n " . Op. DOWN 1;
1

1

N e x t 1 () ;
1

v o i d T e s t (c h a r * O f f s e t , c h a r * S t r
I
p r i n t f ("mov bx .Cbp+%sl \n" . Of fse t) ;
p r i n t f ("cmp b h . [b x l \ n " 1;
p r i n t f (" j n z sho r t F IX_%s%d\n " . S t r . Labe l) ;
p r i n t f ("%s%d:\n" , St r . Label) ;

1

v o i d F i x (c h a r * O f f s e t . c h a r *Str. i n t JumpBack 1
(
p r i n t f ("FIX-%s%d:\n" . St r . Label) ;
p r i n t f ("mov b h . [b x l \ n ") ;
p r i n t f ("mov [bp+%s l ,bx \n " . O f f se t 1;

i f (* O f f s e t !- ' 0 ' p r i n t f (" l e a a x . [b p + % s l \ n " . O f f s e t) ;
e l s e p r i n t f ("mov ax.bp\n") ;

p r i n t f (" s t o s w \ n " 1;

i f (JumpBack) p r i n t f (" j m p s h o r t % s % d \ n " . Str. Label 1;
1

vo id Secondpass (vo id
I
p r i n t f (" o r g O%OZxOOh\n".

(Edge << 7) + (New << 4) + (O l d << 1) + 1 1;

i f (Edge)
I
/ / f i n i s h e d w i t h s e c o n d p a s s
i f (New - 7 && O l d - 0

(
p r i n t f ("cmp b p . o f f s e t DGROUP:ChangeCell\n") ;
p r i n t f (" j n e s h o r t N o t E n d \ n ") ;
p r i n t f ("mov word p t r e s : [d i] . o f f s e t DGROUP:ChangeCell\n" 1;
p r i n t f ("pop d i s i bp ds\n" 1;
p r i n t f ("mov Changece l l .O\n") ;
p r i n t f (" r e t f \ n " 1;
p r i n t f (" N o t E n d : \ n ") ;

1

GetUpAndDownO; / / ah - row, a1 - c o l . c x - up . dx - down

p r i n t f ("push s i \ n " 1;
p r i n t f ("mov s i . % d \ n " . WRAPLEFT 1; / / s i - l e f t
p r i n t f ("cmp a l .O\n") ;
p r i n t f (" j e s h o r t L%d\n". Label) ;
p r i n t f ("mov s i . % d \ n " . LEFT 1;
p r i n t f ("L%d:\n". Label 1;

358 Chapter 18

T e s t (" s i " , "LEFT" 1:
p r i n t f ("add s i , cx \n ") :
T e s t (" s i " . "UPPERLEFT") :
p r i n t f (" s u b s i . c x \ n " 1 ;
p r i n t f ("add s i . d x \ n ") :
T e s t (" s i " . "LOWERLEFT") :

p r i n t f ("mov s i , c x \ n ") :
T e s t (" s i " . "UP" 1:
p r i n t f ("mov s i . d x \ n ") ;
T e s t (" s i " . "DOWN") :

p r i n t f ("cmp b y t e p t r [bp+_RowColMap-_CellMapl.%d\n".
(WIDTH - 1) * 3) :

p r i n t f ("mov s i .%d\n". WRAPRIGHT) ; / / s i = r i g h t
p r i n t f (" j e shor t R%d\n" . Labe l) :
p r i n t f ("mov s i . % d \ n " , RIGHT 1:
p r i n t f ("R%d:\n". Label) :

T e s t (" s i " . "RIGHT") ;
p r i n t f (" a d d s i . c x \ n ") :
T e s t (" s i " . "UPPERRIGHT" 1:
p r i n t f (" sub s i . cx \n ") :
p r i n t f ("add s i . dx \n ") :
T e s t (" s i " . "LOWERRIGHT") ;

}
e l s e

I
T e s t (i t o a (LEFT, Buf. 1 0) , "LEFT") ;
T e s t (i t o a (UPPERLEFT. Buf. 10) . "UPPERLEFT") ;
T e s t (i t o a (LOWERLEFT. B u f . 10) , "LOWERLEFT") :

T e s t (i t o a (UP, B u f . 10 1, "UP") :
T e s t (i t o a (DOWN, Buf, 10) . "DOWN") ;
T e s t (i t o a (RIGHT, Buf. 1 0 1 , "RIGHT" 1 ;
T e s t (i t o a (UPPERRIGHT. B u f . 10 1, "UPPERRIGHT" 1 ;
T e s t (i t o a (LOWERRIGHT. B u f , 10) , "LOWERRIGHT") :

I

if(New = O l d) T e s t ("0" . "CENTER") :

i f(Edge) p r i n t f ("pop s i \ n " " m O V d l .O\n") ;

NextE() :

i f (Edge)

I
F i x (" s i " , "LEFT", 1) :
F i x (" s i " , "UPPERLEFT". 1) :

F i x (" s i " , "LOWERLEFT". 1) :

F i x (" s i " , "UP", 1) ;
F i x (" s i " . "DOWN". 1) :
F i x (" s i " . "RIGHT". 1) :
F i x (" s i " . "UPPERRIGHT". 1 1:
F i x (" s i " , "LOWERRIGHT". New == O l d) ;

1
e l s e

I
F i x (i t o a (LEFT. Buf, 10) . "LEFT", 1) :
F i x (i t o a (UPPERLEFT. B u f . 10 1, "UPPERLEFT". 1) ;
F i x (i t o a (LOWERLEFT. B u f . 10 1, "LOWERLEFT". 1 1:

It's a Wonderful Life 359

F i x (i t o a (UP, B u f . 1 0) , " U P " , 1) ;
F i x (i t o a (DOWN, B u f . 10) , "DOWN", 1 1;
F i x (i t o a (RIGHT, Bu f . 10 1, "RIGHT", 1) :
F i x (i t o a (UPPERRIGHT. B u f . 1 0) , "UPPERRIGHT". 1) ;
F i x (i t o a (LOWERRIGHT. Bu f . 10) , "LOWERRIGHT". New -= O l d) ;

1

if(New - O l d) F i x ("0". "CENTER". 0) ;

i f(Edge) p r i n t f (" p o p s i \ n " "mov d l .O\n") ;

NextE() :
1

v o i d m a i n (v o i d)

(
c h a r *Seg = "ds";

B u i l d M a p s O :

p r i n t f ("DGROUP g roup _DATA\n") ;
p r i n t f (" L I F E s e g m e n t 'CODE'\n") ;
p r i n t f ("assume cs:LIFE.ds:DGROUP,ss:DGROUP,es:NOTHING\n") :
p r i n t f (" .386C\n" "publ ic -NextGen\n\n" 1;

f o r (Edge = 0: Edge <= 1; Edge++)

I
f o r (New = 0 ; New < 8 : New++)

{
f o r (O l d - 0; O l d < 8 : Old++

I
i f (New != O l d F i r s t p a s s o : L a b e l * ;
SecondPassO: Label++:
1

1

/ / f i n i s h e d w i t h f i r s t p a s s
p r i n t f (" o r g O\n") ;
p r i n t f ("mov s i .Changel \n") :
p r i n t f ("mov d i .ChangeZ\n") ;
p r i n t f ("mov C h a n g e l . d i \ n ") ;
p r i n t f ("mov ChangeZ,si \n") :
p r i n t f ("mov Changecel l .OF000h\n") ;
p r i n t f c "mov ax.seg -LDMAP\n") ;
p r i n t f ("mov ds .ax \n" 1 :
NextZ() ;

/ I e n t r y p o i n t
p r i n t f ('"NextGen: push ds bp s i d i \ n " " c l d \ n ") :

i f (WIDTH * HEIGHT > LIST-LIMIT) Seg - "seg -CHANGE";

p r i n t f ("mov ax.%s\n". Seg) ;
p r i n t f ("mov es ,ax \n") :

#i f n d e f NDDRAW
p r i n t f ("mov ax.OAOOOh\n") :
p r i n t f ("mov f s , a x \ n ") :
#end i f

360 Chapter 18

p r i n t f ("mov s i . C h a n g e l \ n " 1:
p r i n t f ("mov d l .O \n " 1:
Nex t1 () :

p r i n t f (" L I F E e n d s \ n e n d \ n " 1 :
I

LISTING 18.3 MA1N.C
/ / MA1N.C
I /
/ / D a v i d S t a f f o r d
/ /

li n c l ude < s t d l i b . h>
i n c l u d e < s t d i o . h >
i n c l u d e < c o n i o . h >
i n c l u d e < t i m e . h >
ii nc l ude < b i o s . h>
#i n c l ude "1 i f e . h"

/ / f u n c t i o n s i n VIDE0.C
v o i d e n t e r - d i s p l a y - m o d e (v o i d 1:
v o i d e x i t - d i s p l a y - m o d e (v o i d) :
v o i d s h o w - t e x t (i n t x . i n t y . c h a r * t e x t) :

v o i d I n i t c e l l m a p (v o i d)
I
u n s i g n e d i n t i. j , t. x . y . i n i t :

f o r (i n i t - (HEIGHT * WIDTH * 3) / 2; i n i t : i n i t - 1
I
x - random(WIDTH * 3) :
y - random(HEIGHT):

Cel lMapC (y * WIDTH) + x / 3 1 1 - Ox1000 << (2 - (x % 3)) :
1

f o r (i - j - 0: i < WIDTH * HEIGHT: i++ 1
t
i f (CellMapC i 1 & 0x7000 1

ChangeL is t lC j++ 1 - (shor t)&Ce l lMapC i 1:
J

1

1
NextGenO: / / S e t c e l l s t a t e s , p r i m e t h e pump.

v o i d m a i n (v o i d 1
I
u n s i g n e d l o n g g e n e r a t i o n - 0:
c h a r g e n - t e x t [80 1:
l o n g s t a r t - t i m e . e n d - t i m e :
u n s i g n e d i n t s e e d :

p r i n t f ("Seed (0 f o r random seed): ") :
scanf("%d". &seed) :
i f (seed - 0) seed - (uns igned) t ime(NULL) :
srand(seed 1:

It's a Wonderful Life 361

i f n d e f NODRAW
en te r -d i sp lay -mode0 :
show-text (0. 10. "Genera t ion : ") :
#end? f

I n i t C e l l m a p O : / / r a n d o m l y i n i t i a l i z e c e l l map

- b ios - t imeo fday (-TIME-GETCLOCK. & s t a r t - t i m e) :

do
(
NextGenO:
generat ion++:

#i f n d e f NOCOUNTER
s p r i n t f (g e n - t e x t . " % 1 0 1 u " . g e n e r a t i o n 1:
show-text (0. 12. gen-text 1:
#endi f
I

C i f d e f GEN
w h i l e (g e n e r a t i o n < GEN 1:
e l s e
w h i l e (! k b h i t O) :
#endi f

- b i o s _ t i m e o f d a y (-TIMELGETCLOCK. &end-t ime) :
end-t ime -- s t a r t - t i m e :

i f n d e f NODRAW
g e t c h (1: / / c l e a r k e y p r e s s
e x i t - d i s p l a y - m o d e 0 :
e n d i f

p r i n t f (" T o t a l g e n e r a t i o n s : % l d \ n S e e d : % u \ n " . g e n e r a t i o n . s e e d):
p r i n t f (" % l d t i c k s \ n " . e n d - t i m e 1:
p r i n t f ("Time: %f generat ions/second\n" .

1
(doub1e)genera t i on / (doub1e)end-t ime * 18.2 1:

LISTING 18.4 VIDE0.C
/* VGA mode 1 3 h f u n c t i o n s f o r Game o f L i f e .

i n c l u d e < s t d i o . h >
i n c l u d e < c o n i o . h >
#i nc l ude <dos f h>

d e f i n e TEXT-X-OFFSET 28
d e f i n e SCREEN-WIDTH-IN-BYTES 320

d e f i n e SCREEN-SEGMENT OxAOOO

T e s t e d w i t h B o r l a n d C++. * /

/ * Mode 1 3 h m o d e - s e t f u n c t i o n . * /
v o i d e n t e r - d i s p l a y - m o d e 0
I

u n i o n REGS r e g s e t :

regse t . x .ax - 0x0013:
i n t 8 6 (0 x 1 0 . & r e g s e t . & r e g s e t) :

3

362 Chapter 18

I* T e x t mode m o d e - s e t f u n c t i o n . * I
v o i d e x i t - d i s p l ay-mode()

u n i o n REGS r e g s e t :

r e g s e t . x . a x - 0x0003:
i n t 8 6 (0 x 1 0 . & r e g s e t , & r e g s e t) :

1

/* T e x t d i s p l a y f u n c t i o n . O f f s e t s t e x t t o n o n - g r a p h i c s a r e a o f

v o i d s h o w - t e x t (i n t x . i n t y . c h a r * t e x t)
I

screen. * I

gotoxy(TEXT-XKOFFSET + x . y) :
p u t s (t e x t) :

1

LISTING 18.5 1IFE.H
v o i d f a r N e x t G e n (v o i d 1:

e x t e r n u n s i g n e d s h o r t C e l l M a p [l ;
e x t e r n u n s i g n e d s h o r t f a r C h a n g e L i s t l C I :

d e f i n e LEFT
l d e f i ne RIGHT
d e f i n e UP
d e f i n e DOWN
d e f i n e UPPERLEFT
d e f i n e UPPERRIGHT
d e f i n e LOWERLEFT
% d e f i n e LOWERRIGHT
d d e f i n e WRAPLEFT
d e f i n e WRAPRIGHT
d e f i n e WRAPUP
d e f i n e WRAPOOWN

(- 2)
(+2 1
(WIDTH * LEFT)
(WIDTH * RIGHT)
(U P + LEFT)
(U P + RIGHT)
(DOWN + LEFT)
(DOWN + RIGHT)
(RIGHT * (WIDTH - 1))
(LEFT * (WIDTH - 1))
(DOWN * (HEIGHT - 1))
(UP * (HEIGHT - 1))

Keeping Track of Change with a Change List
In my earlier optimizations to the Game of Life, described in the last chapter, I noted
that most cells in a Life cellmap are dead, and in most cases all the neighbors are
dead as well. This observation enabled me to get a major speed-up by scanning the
cellmap for the few non-zero bytes (cells that were either alive or have neighbors
that are alive). Although that was a big improvement, it still required my code to
touch every cell to check its state. David has improved on this by maintaining a change
list; that is, a list of pointers to cells that change in the current generation. Only
those cells and their neighbors need to be checked or touched in any way in order to
create the next generation, saving a great many instructions and also a great many
cache misses due to the fact that cellmaps are too big to fit into the 486’s internal
cache. During a given generation, David runs down the list of cells that changed
from the previous generation to make the changes for this generation, and in the
process generates the change list for the next generation.
That’s the overall approach, but this being David Stafford, it’s not that simple, of
course. I’ll let him tell you how his implementation works in his own words. (I’ve

It’s a Wonderful Life 363

edited David’s text a bit, and added my own comments in square brackets, so blame
me for any errors.)
“Each three cells in the life grid are packed into two bytes, as shown in Figure 18.1.
So, it is convenient if the width of the cell array is an even multiple of three. There’s
nothing in the algorithm that prevents it from supporting any arbitrary size, but the
code is a bit simpler this way. So if you want a 200x200 grid, I recommend just using
a 201x200 grid, and be happy with the extra free column. Otherwise the edge wrap-
ping code gets more complex.
“Since every cell has from zero to eight neighbors, you may be wondering how I can
manage to keep track of them with only three bits. Each cell really has only a maximum
of seven neighbors since we only need to keep track of neighbors uutsde of the current
cell word. That is, if cell ‘B’ changes state then we don’t need to reflect this in the
neighbor counts of cells ‘A’ and ‘C.’ Updating is made a little faster. [In other words,
when David picks up a word representing three cells, each of the three cells has at
least one of the other cells in that word as a neighbor, and the state of that neighbor
is stored right in that word, as shown in Figure 18.1. Therefore, the neighbor count

E A B C a b c X X X Y Y Y Z Z Z

-

B i t 1 1 1 1 1 1 9 8 7 6 5 4 3 2 1 0
5 4 3 2 1 0

E : 0 if cell is internal (nonedge, so no wrapping), 1 if on

ABC : the life/death cell states for the next generation

abc : the life/death cell states for the current generation

XXX : the neighbor count for cell A

YYY : the neighbor count for cell B
ZZZ : the neighbor count for cell C

an edge (involves wrapping)

Cells A, B, and C are horizontall adjacent, and are the
leftmost, center, and rightmost ce Y Is, respectively, represented
by this cell triplet.

Cell triplet storage.
Figure 18.1

364 Chapter 18

for a given cell never needs to reflect more than seven neighbors, because at least
one of the eight neighbors’ states is already encoded in the word.]
“The basic idea is to maintain a ‘change list.’ This is an array of pointers into the cell
array. Each change list element points to a word which changes in the next genera-
tion. This way we don’t have to waste time scanning every cell since most of them do
not change. Two passes are made through the change list. The first pass updates the
cell display on the screen, sets the life/death status of each cell for this new genera-
tion, and updates the neighbor counts for the adjacent cells. There are some
efficiencies gained by using cell triplets rather than individual cells since we usually
don’t need to set all eight neighbors. [Again, the neighbor counts for cells in the
same word are implied by the states of those cells.] The second pass sets the next-
generation states for the cells and their neighbors, and in the process builds the
change list for the next generation.
“Processing each word is a little complex but very fast. A 64K block of code exists
with routines on each 256-byte boundary. Generally speaking, the entry point corre-
sponds to the high byte of the cell word. This byte contains the life/death values and
a bit to indicate if this is an edge condition. During the first pass we take the cell
triplet word, AND it with OXFEOO, and jump to that address. During the second pass
we take the cell triplet word, AND it with OxFE00, OR it with 0x0100, and jump to
that address. [Therefore, there are 128 possible jump targets on the first pass, and
128 more on the second, all on 256-byte boundaries and all keyed off the high 7 bits
of the cell triplet state; because bit 8 of the jump index is 0 on the first pass and 1 on
the second, there is no conflict. The lower bit isn’t needed for other purposes be-
cause only the edge flag bit and the six life/death state bits matter for jumping into
David’s state machine. The other nine bits, the bits used for the neighbor counts, are
used only in the next step.]
“Determining which changes must be made to a cell triplet is easy and surprisingly
quick. There’s no counting! Instead, I use a 64K lookup table indexed by the cell
triplet itself. The value of the lookup table entry is equal to what the high byte should
be in the next generation. If this value is equal to the current high byte, then no
changes are necessary to the cell. Otherwise it is placed in the change list. Look at
the code in the Test() and Fix() functions to see how this is done.” [This step is as
important as it is obscure. David has a 64K table organized so that if you use a word
describing a cell triplet as a lookup index, the byte you will read will be the state of
the high byte for the next generation. In other words, David’s table is constructed so
that the edge flag bit, the life/death states, and the three neighbor count fields form
an index to a byte describing the next generation state for that triplet. In practice,
only the next generation field of the cell changes. Then, if another change to a
nearby cell tries to nudge that cell into changing again, David’s code sees that the
desired state is already set, and does not add that cell to the change list again.]

It’s a Wonderful Life 365

Segment usage in David’s assembly code is summarized in Listing 18.6.

LISTING 18.6 QLIFE Assembly Segment Usage
C S : 6 4 K c o d e (t a b l e o f r o u t i n e s on 256 b y t e b o u n d a r i e s)
DS : DGROUP (1st pass) / 6 4 K c e l l l i f e / d e a t h c l a s s i f i c a t i o n t a b l e (s e c o n d p a s s)
ES : Change l i s t
SS : DGROUP: t h e l i f e c e l l g r i d and row /co lumn tab le
FS : Video segment
GS : Unused

A Layperson‘s Overview of QLIFE
Most likely, you’re scratching your head right now in bemusement. I don’t blame
you; I felt the same way myself at first. It’s actually pretty simple, though, once you
have the hang of it. Basically, David runs down the change list, visiting every cell
that’s due to change in this generation, setting it to the new state, drawing it in the
new state, and adjusting the counts of all its neighbors. David has a separate assem-
bly routine for every possible change of state for a cell triplet, and he jumps to the
proper routine by taking the cell triplet word, masking off the lower 9 bits, and
jumping to the address where the appropriate code to perform that particular change
of state resides. He does this for every entry in the change list. When this is com-
pleted, the current generation has been drawn and updated.
Now David runs down the change list again to generate the change list for the next
generation. In this case, for every changed cell triplet, David looks at that triplet and
all affected neighbors to see which will change in the next generation. He tests for this
condition by using each potentially changed cell triplet word as an index into the
aforementioned lookup table of new states. If the current state matches the appropri-
ate state for the next generation, then there’s nothing to do and the cell is not added
to the change list. If the states don’t match, then the cell is added to the change list,
and the appropriate state for the next generation is set in the cell triplet. David checks
the minimum possible number of cells for change by branching to code that checks
only the relevant cells around each cell triplet in the current change list; that branch-
ing is accomplished by taking the cell triplet word, masking off the lower 9 bits, setting
bit 8 to a 1-bit, and branching to the routine at that address. As with everything in this
amazing program, this represents the least possible work to accomplish the desired
result-just three instructions:

mov d h . [b p + l l
o r d h . 1
jmp dx

These suffice to select the proper, minimum-work code to process the next cell tr ip
let that has changed, and all potentially affected neighbors. For all the size of David’s
code, it has an astonishing economy of effort, as execution glides through the change
list without a wasted instruction.

366 Chapter 18

Alas, I don’t have the room to discuss Peter Klerings’ equally remarkable Life imple-
mentation here. I’ll close this chapter with a quote from Terje Mathisen, one of the
finest optimizers it has ever been my pleasure to meet, who, after looking over David’s
and Peter’s entries, said, “This has been an eye-opening experience for me. I hon-
estly thought I had the fastest possible approach.” TANSTATFC.
There Ain’t No Such Thing As the Fastest Code.

It‘s a Wonderful Life 367

	next:
	home:
	previous:

