
chapter 1

the best optimizer is between your ears

ement of Code Optimization
This book is devdted to a topic near and dear to my heart: writing software that
pushes PCs to the n-of-the-mill software, PCs run like the 97-pound-
weakling rninicompu e. Give them the proper care, however, and those
ugly boxes are capable es. The key is this: Only on microcomputers do you
have the run of the whole machine, without layers of operating systems, drivers, and
the like getting in $e way. You can do anything you want, and you can understand

ng on, if you so wish.
you should indeed so wish.

Is performance stiIl’$n issue in this era of cheap 486 computers and super-fast Pentium
computers? You bet3,How many programs that you use really run so fast that you
wouldn’t be happier 3 they ran faster? We’re so used to slow software that when a
compile-and-link sequence that took two minutes on a PC takes just ten seconds on
a 486 computer, we’re ecstatic-when in truth we should be settling for nothing less
than instantaneous response.
Impossible, you say? Not with the proper design, including incremental compilation
and linking, use of extended and/or expanded memory, and wellcrafted code. PCs can
do just about anything you can imagine (with a few obvious exceptions, such as applica-
tions involving super-computer-class number-crunching) if you believe that it can be
done, if you understand the computer inside and out, and if you’re willing to think
past the obvious solution to unconventional but potentially more fmitful approaches.

5

the human element of code optimization

My point is simply this: PCs can work wonders. It’s not easy coaxing them into doing
that, but it’s rewarding-and it’s sure as heck fun. In this book, we’re going to work
some of those wonders, starting.. .
. . .now.

Understanding High Performance
Before we can create high-performance code, we must understand what high perfor-
mance is. The objective (not always attained) in creating high-performance software
is to make the software able to carry out its appointed tasks so rapidly that it responds
instantaneously, as f i r as the user is concerned. In other words, high-performance code
should ideally run so fast that any further improvement in the code would be pointless.
Notice that the above definition most emphatically does not say anything about making
the software as fast as possible. It also does not say anything about using assembly lan-
guage, or an optimizing compiler, or, for that matter, a compiler at all. It also doesn’t say
anything about how the code was designed and written. What it does say is that high-
performance code shouldn’t get in the user’s way-and that’s all.
That’s an important distinction, because all too many programmers think that as-
sembly language, or the right compiler, or a particular high-level language, or a
certain design approach is the answer to creating high-performance code. They’re
not, any more than choosing a certain set of tools is the key to building a house. You
do indeed need tools to build a house, but any of many sets of tools will do. You also
need a blueprint, an understanding of everything that goes into a house, and the
ability to use the tools.
Likewise, high-performance programming requires a clear understanding of the
purpose of the software being built, an overall program design, algorithms for imple-
menting particular tasks, an understanding of what the computer can do and of
what all relevant software is doing-and solid programming skills, preferably using
an optimizing compiler or assembly language. The optimization at the end isjust the
finishing touch, however.

mthout good design, good algorithms, and complete understanding of the program k p operation, your carefully optimized code will amount to one of mankindb least
fruitful creations-a fast slow program.

‘What’s a fast slow program?” you ask. That’s a good question, and a brief (true)
story is perhaps the best answer.

When Fast Isn’t Fast
In the early 1970s, as the first hand-held calculators were hitting the market, I knew
a fellow named Irwin. He was a good student, and was planning to be an engineer.

6 Chapter 1

Being an engineer back then meant knowing how to use a slide rule, and Irwin could
jockey a slipstick with the best of them. In fact, he was so good that he challenged a
fellow with a calculator to a duel-and won, becoming a local legend in the process.
When you get right down to it, though, Irwin was spitting into the wind. In a few
short years his hard-earned slipstick skills would be worthless, and the entire disci-
pline would be essentially wiped from the face of the earth. What’s more, anyone
with half a brain could see that changeover coming, Irwin had basically wasted the
considerable effort and time he had spent optimizing his soon-to-be-obsolete skills.

What does all this have to do with programming? Plenty. When you spend time opti-
mizing poorlydesigned assembly code, or when you count on an optimizing compiler
to make your code fast, you’re wasting the optimization, much as Irwin did. Particu-
larly in assembly, you’ll find that without proper up-front design and everything else
that goes into high-performance design, you’ll waste considerable effort and time on
making an inherently slow program as fast as possible-which is still slow-when you
could easily have improved performance a great deal more with just a little thought. As
we’ll see, handcrafted assembly language and optimizing compilers matter, but less
than you might think, in the grand scheme of things-and they scarcely matter at all
unless they’re used in the context of a good design and a thorough understanding of
both the task at hand and the PC.

Rules for Building High-Performance Code
We’ve got the following rules for creating high-performance software:

Know where you’re going (understand the objective of the software).
Make a big map (have an overall program design firmly in mind, so the various
parts of the program and the data structures work well together).
Make lots of little maps (design an algorithm for each separate part of the over-
all design).
Know the territory (understand exactly how the computer carries out each task).
Know when it matters (identify the portions of your programs where perfor-

Always consider the alternatives (don’t get stuck on a single approach; odds are

Know how to turn on the juice (optimize the code as best you know how when it

mance matters, and don’t waste your time optimizing the rest).

there’s a better way, if you’re clever and inventive enough).

does matter).
Making rules is easy; the hard part is figuring out how to apply them in the real
world. For my money, examining some actual working code is always a good way to
get a handle on programming concepts, so let’s look at some of the performance
rules in action.

The Best Optimizer Is between Your Ears 7

Know Where You’re Going
If we’re going to create high-performance code, first we have to know what that code
is going to do. As an example, let’s write a program that generates a 16-bit checksum
of the bytes in a file. In other words, the program will add each byte in a specified file
in turn into a 16-bit value. This checksum value might be used to make sure that a
file hasn’t been corrupted, as might occur during transmission over a modem or if a
Trojan horse virus rears its ugly head. We’re not going to do anything with the
checksum value other than print it out, however; right now we’re only interested in
generating that checksum value as rapidly as possible.

Make a Big Map
How are we going to generate a checksum value for a specified file? The logical
approach is to get the file name, open the file, read the bytes out of the file, add
them together, and print the result. Most of those actions are straightforward; the
only tricky part lies in reading the bytes and adding them together.

Make Lots of Little Maps
Actually, we’re only going to make one little map, because we only have one program
section that requires much thought-the section that reads the bytes and adds them
up. What’s the best way to do this?
It would be convenient to load the entire file into memory and then sum the bytes in
one loop. Unfortunately, there’s no guarantee that any particular file will fit in the
available memory; in fact, it’s a sure thing that many files won’t fit into memory, so
that approach is out.
Well, if the whole file won’t fit into memory, one byte surely will. If we read the file one
byte at a time, adding each byte to the checksum value before reading the next byte,
we’ll minimize memory requirements and be able to handle any size file at all.
Sounds good, eh? Listing 1.1 shows an implementation of this approach. Listing 1.1
uses C’s read() function to read a single byte, adds the byte into the checksum value,
and loops back to handle the next byte until the end of the file is reached. The code
is compact, easy to write, and functions perfectly-with one slight hitch:
It’s slow.

LISTING 1.1 11-1.C
I*
* Program t o c a l c u l a t e t h e 1 6 - b i t c h e c k s u m o f a l l b y t e s i n t h e
* s p e c i f i e d f i l e . O b t a i n s t h e b y t e s one a t a t i m e v i a r e a d 0 .
* l e t t i n g DOS p e r f o r m a l l d a t a b u f f e r i n g .
*I
#i n c l ude < s t d i 0. h>
i n c l u d e < f c n t l . h >

m a i n (i n t a r g c . c h a r * a r g v []) (

8 Chapter 1

i n t Handle;
uns igned cha r By te ;
u n s i g n e d i n t Checksum:
i n t ReadLength;

i f (a r g c !- 2) {
p r i n t f (" u s a g e : c h e c k s u m f i l e n a m e \ n ") :
e x i t (1) :

1
i f ((Handle - open(argvC11. 0-RDONLY I 0-BINARY)) - -1) I

p r i n t f (" C a n ' t open f i l e : % s \ n " . a r g v C 1 1) :
e x i t (1) ;

I

/ * I n i t i a l i z e t h e checksum accumulator * /
Checksum - 0;

/ * Add e a c h b y t e i n t u r n i n t o t h e c h e c k s u m a c c u m u l a t o r * /
w h i l e ((ReadLength - r e a d (H a n d 1 e . & B y t e . s i z e o f (B y t e))) > 0) {

}
i f (ReadLength - -1) {

Checksum +- (u n s i g n e d i n t) B y t e ;

p r i n t f (" E r r o r r e a d i n g f i l e % s \ n " . a r g v C 1 1) ;
e x i t (1) :

)

/ * R e p o r t t h e r e s u l t * /
p r i n t f (" T h e checksum i s : % u \ n " . Checksum);
e x i t (0) ;

)

Table 1.1 shows the time taken for Listing 1.1 to generate a checksum of the WordPerfect
version 4.2 thesaurus file, TH.WP (362,293 bytes in size), on a 10 MHz AT machine of
no special parentage. Execution times are given for Listing 1.1 compiled with Borland
and Microsoft compilers, with optimization both on and off; all four times are pretty
much the same, however, and all are much too slow to be acceptable. Listing 1.1 re-
quires over two and one-half minutes to checksum one file!

Listings 1.2 and 1.3 form the Uassembly equivalent to Listing 1.1, and Listings e 1.6 and 1.7 form the Uassembly equivalent to Listing 1.5.

These results make it clear that it's folly to rely on your compiler's optimization to
make your programs fast. Listing 1.1 is simply poorly designed, and no amount of
compiler optimization will compensate for that failing. To drive home the point, con-
sider Listings 1.2 and 1.3, which together are equivalent to Listing 1.1 except that the
entire checksum loop is written in tight assembly code. The assembly language imple-
mentation is indeed faster than any of the C versions, as shown in Table 1.1, but it's less
than 10 percent faster, and it's still unacceptably slow.

The Best Optimizer Is between Your Ears 9

LISTING 1.2 11-2.C
I*
* Program t o c a l c u l a t e t h e 1 6 - b i t c h e c k s u m o f t h e s t r e a m o f b y t e s
* f r o m t h e s p e c i f i e d f i l e . O b t a i n s t h e b y t e s o n e a t a t i m e i n
* a s s e m b l e r . v i a d i r e c t c a l l s t o 00s.
* I

i n c l u d e < s t d i o . h >
i n c l u d e < f c n t l . h >

m a i n (i n t a r g c . c h a r * a r g v [l) {
i n t Hand1 e;
u n s i g n e d c h a r B y t e :
u n s i g n e d i n t Checksum:
i n t

i f (

1
i f (

ReadLength:

a r g c !- 2) {
p r i n t f (" u s a g e : c h e c k s u m f i l e n a m e \ n ") :
e x i t (1) :

(Handle - open(argvC11. 0-RDONLY I 0-BINARY)) - -1) I
p r i n t f (" C a n ' t o p e n f i l e : % s \ n " . a r g v C 1 1) :
e x i t (1) :

1
i f (!ChecksumFile(Handle. &Checksum)) {

p r i n t f (" E r r o r r e a d i n g f i l e % s \ n " . a r g v C 1 1) :
e x i t (1) :

1

I* R e p o r t t h e r e s u l t *I
p r i n t f (" T h e c h e c k s u m i s : %u\n". Checksum):
e x i t (0) ;

1

10 Chapter 1

LISTING 1.3 11 -3.ASM
; A s s e m b l e r s u b r o u t i n e t o p e r f o r m a 1 6 - b i t checksum on t h e f i l e
; opened on t h e p a s s e d - i n h a n d l e . S t o r e s t h e r e s u l t i n t h e
; p a s s e d - i n c h e c k s u m v a r i a b l e . R e t u r n s 1 f o r s u c c e s s , 0 f o r e r r o r .

; C a l l a s :
i n t ChecksumFi le(uns igned i n t Hand le , uns igned i n t *Checksum) ;

; where:
Handle - hand le # u n d e r w h i c h f i l e t o c h e c k s u m i s open
Checksum - p o i n t e r t o u n s i g n e d i n t v a r i a b l e c h e c k s u m i s
t o b e s t o r e d i n

; P a r a m e t e r s t r u c t u r e :

Parms s t r u c
dw ? ;pushed BP
dw ? ; r e t u r n a d d r e s s

Hand1 e dw ?
Checksum dw ?
Pa rms ends

TempWord 1 abe l
TempByte

- ChecksumFi le

ChecksumLoop:

E r ro rEnd :

Success :

.model smal 1

. d a t a
word
db
db

.code
pub1 i c
p r o c n e a r
push
mov
push

mov
sub

mov

mov

mov
i n t
j c
and
jz
add

jmp

sub
jmp

mov
mov
mov

? ;each by te read by DDS will b e s t o r e d h e r e
0 ; h i g h b y t e o f TempWord i s a lways 0

; f o r 1 6 - b i t adds

- ChecksumFi l e

bp
bp. sp
s i : s a v e C ' s r e g i s t e r v a r i a b l e

bx. [bp+Handle l ; g e t f i l e h a n d l e
s i , s i : ze ro t he checksum

;accumu la to r

; r e a d

;wh ich DOS s h o u l d s t o r e
: e a c h b y t e r e a d

cx.1 ; request one byte on each

d x . o f f s e t TempByte ; p o i n t DX t o t h e b y t e i n

a h , 3 f h :DOS r e a d f i l e f u n c t i o n #
21h ; r e a d t h e b y t e
E r ro rEnd :an e r r o r o c c u r r e d
ax.ax ;any by tes read?
Success ;no-end o f f i l e reached-we're done
si.[TempWord] ; a d d t h e b y t e i n t o t h e

;checksum t o t a l
ChecksumLoop

a x , a x ; e r r o r
s h o r t Done

bx.[bp+Checksuml ; p o i n t t o t h e c h e c k s u m v a r i a b l e
[b x l , s i ; save t he new checksum
ax .1 ;success

The Best Optimizer Is between Your Ears 1 1

Done:
POP s i
POP bP
r e t

end
- ChecksumFile endp

: r e s t o r e C ’ s r e g i s t e r v a r i a b l e

The lesson is clear: Optimization makes code faster, but without proper design, opti-
mization just creates fast slow code.
Well, then, how are we going to improve our design? Before we can do that, we have
to understand what’s wrong with the current design.

Know the Territory
Just why is Listing 1.1 so slow? In a word: overhead. The C library implements the
read() function by calling DOS to read the desired number of bytes. (I figured this
out by watching the code execute with a debugger, but you can buy library source
code from both Microsoft and Borland.) That means that Listing 1.1 (and Listing
1.3 as well) executes one DOS function per byte processed-and DOS functions,
especially this one, come with a lot of overhead.
For starters, DOS functions are invoked with interrupts, and interrupts are among
the slowest instructions of the x86 family CPUs. Then, DOS has to set up internally
and branch to the desired function, expending more cycles in the process. Finally,
DOS has to search its own buffers to see if the desired byte has already been read,
read it from the disk if not, store the byte in the specified location, and return. All of
that takes a long time-far, far longer than the rest of the main loop in Listing 1.1. In
short, Listing 1.1 spends virtually all of its time executing read(), and most of that
time is spent somewhere down in DOS.
You can verify this for yourself by watching the code with a debugger or using a code
profiler, but take my word for it: There’s a great deal of overhead to DOS calls, and
that’s what’s draining the life out of Listing 1.1.
How can we speed up Listing 1.1? It should be clear that we must somehow avoid
invoking DOS for every byte in the file, and that means reading more than one byte
at a time, then buffering the data and parceling it out for examination one byte at a
time. By gosh, that’s a description of C’s stream 1 / 0 feature, whereby C reads files in
chunks and buffers the bytes internally, doling them out to the application as needed
by reading them from memory rather than calling DOS. Let’s try using stream 1 / 0
and see what happens.
Listing 1.4 is similar to Listing 1 .l, but uses fopen() and getc() (rather than open()
and read()) to access the file being checksummed. The results confirm our theories
splendidly, and validate our new design. As shown in Table 1.1, Listing 1.4 runs more
than an order of magnitude faster than even the assembly version of Listing 1.1, men
though Listing 1.1 and Listing 1.4 look almost the same. To the casual observer, read()

1 2 Chapter 1

and getc() would seem slightly different but pretty much interchangeable, and yet in
this application the performance difference between the two is about the same as
that between a 4.77 MHz PC and a 16 MHz 386.

Make sure you understand what really goes on when you insert a seemingly- p innocuous function call into the time-critical portions of your code.

In this case that means knowing how DOS and the C/Ctt file-access libraries do
their work. In other words, know the territory !

LISTING 1.4 11-4.C
I*
* Program t o c a l c u l a t e t h e 1 6 - b i t checksum o f t h e s t r e a m o f b y t e s
* f r o m t h e s p e c i f i e d f i l e . O b t a i n s t h e b y t e s o n e a t a t i m e v i a
* g e t c 0 . a l l o w i n g C t o p e r f o r m d a t a b u f f e r i n g .
* /
i n c l u d e < s t d i o . h>

m a i n (i n t a r g c . c h a r * a r g v []) {
F ILE *CheckF i l e :
i n t B y t e :
u n s i g n e d i n t Checksum:

i f (a r g c != 2) {
p r i n t f (" u s a g e : c h e c k s u m f i l e n a m e \ n ") :
e x i t (1) :

I
i f ((C h e c k F i l e = f o p e n (a r g v C 1 1 . " r b ")) =- NULL) (

p r i n t f (" C a n ' t open f i l e : % s \ n " . a r g v [l]) :
e x i t (1) :

I

/* I n i t i a l i z e t h e checksum accumulator * /
Checksum = 0:

/ * Add e a c h b y t e i n t u r n i n t o t h e checksum accumulator * /
w h i l e ((B y t e = g e t c (C h e c k F i 1 e)) != EOF {

I
Checksum += (u n s i g n e d i n t) B y t e :

/ * R e p o r t t h e r e s u l t * /
p r i n t f (" T h e c h e c k s u m i s : %u\n". Checksum):
e x i t (0) :

T

Know When It Matters
The last section contained a particularly interesting phrase: the time-criticalportions of
your code. Time-critical portions of your code are those portions in which the speed
of the code makes a significant difference in the overall performance of your pro-
gram-and by "significant," I don't mean that it makes the code 100 percent faster,
or 200 percent, or any particular amount at all, but rather that it makes the program
more responsive and/or usable from the user's perspective.

The Best Optimizer Is between Your Ears 13

Don’t waste time optimizing non-time-critical code: set-up code, initialization code,
and the like. Spend your time improving the performance of the code inside heavily-
used loops and in the portions of your programs that directly affect response time.
Notice, for example, that I haven’t bothered to implement aversion of the checksum
program entirely in assembly; Listings 1.2 and 1.6 call assembly subroutines that
handle the time-critical operations, but C is still used for checking command-line
parameters, opening files, printing, and the like.

p Ifyou were to implement any of the listings in this chapter entirely in hand-opti-
mized assembly, I suppose you might get a performance improvement of a few
percent-but Irather doubtyou iiget even that much, andyou iisure as heckspend
an awful lot of time for whatever meager improvement does result. Let C do what
it does well, and use assembly only when it makes a perceptible dzfference.

Besides, we don’t want to optimize until the design is refined to our satisfaction, and
that won’t be the case until we’ve thought about other approaches.

Always Consider the Alternatives
Listing 1.4 is good, but let’s see if there are other-perhaps less obvious-ways to get
the same results faster. Let’s start by considering why Listing 1.4 is so much better
than Listing 1.1. Like read(), getc() calls DOS to read from the file; the speed im-
provement of Listing 1.4 over Listing 1.1 occurs because getc() reads many bytes at
once via DOS, then manages those bytes for us. That’s faster than reading them one
at a time using read()-but there’s no reason to think that it’s faster than having our
program read and manage blocks itself. Easier, yes, but not faster.
Consider this: Every invocation of getc() involves pushing a parameter, executing a
call to the C library function, getting the parameter (in the C library code), looking
up information about the desired stream, unbuffering the next byte from the stream,
and returning to the calling code. That takes a considerable amount of time, espe-
cially by contrast with simply maintaining a pointer to a buffer and whizzing through
the data in the buffer inside a single loop.
There are four reasons that many programmers would give for not trying to improve
on Listing 1.4:
1. The code is already fast enough.
2. The code works, and some people are content with code that works, even when it’s slow

enough to be annoying.
3. The C library is written in optimized assembly, and it’s likely to be faster than any code

that the average programmer could write to perform essentially the same function.
4. The C library conveniently handles the buffering of file data, and it would be a nui-

sance to have to implement that capability.

14 Chapter 1

I'll ignore the first reason, both because performance is no longer an issue if the
code is fast enough and because the current application does not run fast enough-
1 3 seconds is a long time. (Stop and wait for 1 3 seconds while you're doing something
intense, and you'll see just how long it is.)
The second reason is the hallmark of the mediocre programmer. Know when opti-
mization matters-and then optimize when it does!
The third reason is often fallacious. C library functions are not always written in
assembly, nor are they always particularly well-optimized. (In fact, they're often writ-
ten for portability, which has nothing to do with optimization.) What's more, they're
general-purpose functions, and often can be outperformed by well-but-not- brilliantly-
written code that is well-matched to a specific task. As an example, consider Listing
1.5, which uses internal buffering to handle blocks of bytes at a time. Table 1.1 shows
that Listing 1.5 is 2.5 to 4 times faster than Listing 1.4 (and as much as 49 times faster
than Listing 1.1 !), even though it uses no assembly at all.

Clearly, you can do well by using special-purpose C code in place of a C library p function-ifyou have a thorough understanding of how the C library function
operates and exactly what your application needs done. Otherwise, you'll end up
rewriting C library functions in C, which makes no sense at all.

LISTING 1.5 11-5.C
I*
* Program t o c a l c u l a t e t h e 1 6 - b i t checksum o f t h e s t r e a m o f b y t e s
* f r o m t h e s p e c i f i e d f i l e . B u f f e r s t h e b y t e s i n t e r n a l l y , r a t h e r
* t h a n l e t t i n g C o r DOS do t h e w o r k .
* I
#i n c l u d e < s t d i 0. h>
d i n c l u d e < f c n t l . h>
i n c l u d e < a l l o c . h > I* a l 1 o c . h f o r B o r l a n d .

r n a l 1 o c . h f o r M i c r o s o f t *I

d e f i n e BUFFER-SIZE 0x8000 I* 32Kb d a t a b u f f e r * /

m a i n (i n t a r g c . c h a r * a r g v [I) [
i n t Hand1 e ;
u n s i g n e d i n t Checksum:
uns igned cha r *Work ingBu f fe r . *Work ingP t r ;
i n t Work ingLength . Lengthcount ;

i f (a rgc != 2 1 {
p r i n t f (" u s a g e : c h e c k s u m f i l e n a r n e \ n ") :
e x i t (1) ;

I
i f ((Handle = o p e n (a r g v [l] . 0-RDONLY I 0-BINARY)) -- -1) I

p r i n t f (" C a n ' t o p e n f i l e : % s \ n " , a r g v C 1 1) :
e x i t (1) ;

I

I* Get memory i n w h i c h t o b u f f e r t h e d a t a *I
i f ((W o r k i n g B u f f e r = malloc(BUFFER-SIZE)) == NULL) {

p r i n t f (" C a n ' t g e t e n o u g h m e m o r y \ n ") :

The Best Optimizer Is between Your Ears 15

J

I* I n i t i a l i z e t h e checksum accumulator * I
Checksum = 0:

I* P r o c e s s t h e f i l e i n BUFFER-SIZE chunks * I
do {

i f ((Work ingLength = read(Hand1e. Work ingBuf fe r .

p r i n t f (" E r r o r r e a d i n g f i l e % s \ n " . a r g v [l]) ;
e x i t (1) ;

BUFFER-SIZE)) == -1) {

1
I* Checksum t h i s c h u n k * I
W o r k i n g P t r - W o r k i n g B u f f e r :
Lengthcount = Work ingLength :
w h i l e (Lengthcount " 1
I* Add e a c h b y t e i n t u r n i n t o t h e checksum accumulator *I

1
Checksum += (u n s i g n e d i n t) * W o r k i n g P t r + + :

1 w h i l e (Work ingLength) ;

I* R e p o r t t h e r e s u l t * I
p r i n t f (" T h e c h e c k s u m i s : %u\n" . Checksum);
e x i t (0) ;

I

That brings us to the fourth reason: avoiding an internal-buffered implementation
like Listing 1.5 because of the difficulty of coding such an approach. True, it is easier
to let a C library function do the work, but it's not all that hard to do the buffering
internally. The key is the concept of handling data in restartable blocks; that is, reading
a chunk of data, operating on the data until it runs out, suspending the operation
while more data is read in, and then continuing as though nothing had happened.
In Listing 1.5 the restartable block implementation is pretty simple because
checksumming works with one byte at a time, forgetting about each byte immedi-
ately after adding it into the total. Listing 1.5 reads in a block of bytes from the file,
checksums the bytes in the block, and gets another block, repeating the process
until the entire file has been processed. In Chapter 5, we'll see a more complex
restartable block implementation, involving searching for text strings.
At any rate, Listing 1.5 isn't much more complicated than Listing 1.4-and it's a lot
faster. Always consider the alternatives; a bit of clever thinking and program rede-
sign can go a long way.

Know How to Turn On the Juice
I have said time and again that optimization is pointless until the design is settled.
When that time comes, however, optimization can indeed make a significant differ-
ence. Table 1.1 indicates that the optimized version of Listing 1.5 produced by
Microsoft C outperforms an unoptimized version of the same code by more than 60
percent. What's more, a mostly-assembly version of Listing 1.5, shown in Listings 1.6

16 Chapter 1

and 1.7, outperforms even the best-optimized C version of Listing 1.5 by 26 percent.
These are considerable improvements, well worth pursuing-once the design has
been maxed out.

LISTING 1.6 11-6.C
/ *
* Program t o c a l c u l a t e t h e 1 6 - b i t checksum o f t h e s t r e a m o f b y t e s
* f r o m t h e s p e c i f i e d f i l e . B u f f e r s t h e b y t e s i n t e r n a l l y , r a t h e r
* t h a n l e t t i n g C o r DOS do t h e w o r k , w i t h t h e t i m e - c r i t i c a l

* I
* p o r t i o n o f t h e c o d e w r i t t e n i n o p t i m i z e d a s s e m b l e r .

i n c l u d e < s t d i o . h >
i n c l u d e < f c n t l . h>
i n c l u d e < a l l o c . h > / * a l 1 o c . h f o r B o r l a n d .

m a l 1 o c . h f o r M i c r o s o f t * /

d e f i n e BUFFER-SIZE 0x8000 / * 32K d a t a b u f f e r * I

m a i n (i n t a r g c . c h a r * a r g v []) t
i n t Handle:
u n s i g n e d i n t Checksum:
u n s i g n e d c h a r * W o r k i n g B u f f e r :
i n t W o r k i n g L e n g t h ;

i f (a r g c != 2) I
p r i n t f (" u s a g e : c h e c k s u m f i l e n a m e \ n ") :
e x i t (1) :

I
i f ((Hand le = o p e n (a r g v [l] . 0-ROONLY I 0-BINARY)) == -1) 1

p r i n t f (" C a n ' t o p e n f i l e : % s \ n " . a r g v [l l) :
e x i t (1) ;

1

/ * Get memory i n w h i c h t o b u f f e r t h e d a t a * /
i f ((W o r k i n g B u f f e r = malloc(BUFFER-SIZE)) == NULL 1 t

p r i n t f (" C a n ' t g e t e n o u g h m e m o r y \ n ") :
e x i t (1) ;

I

/* I n i t i a l i z e t h e checksum accumulator * /
Checksum = 0 :

I* P r o c e s s t h e f i l e i n 32K chunks * /
do

i f ((Work ingLength = read(Hand1e. Work ingBuf fe r .
BUFFER-SIZE)) == -1) 1

p r i n t f (" E r r o r r e a d i n g f i l e % s \ n " . a r g v C 1 1) :
e x i t (1) ;

I
/ * Checksum t h i s chunk i f t h e r e ' s a n y t h i n g i n i t * /
i f (Work ingLength)

] w h i l e (Work ingLength) :

/ * R e p o r t t h e r e s u l t * /
p r in t f ("The checksum i s : %u \n " . Checksum) :
e x i t (0) :

ChecksumChunk(WorkingBuffer. WorkingLength. &Checksum);

The Best Optimizer Is between Your Ears 17

LISTING 1.7 11 -7.ASM
; A s s e m b l e r s u b r o u t i n e t o p e r f o r m a 1 6 - b i t checksum on a b l o c k o f
; b y t e s 1 t o 64K i n s i z e . Adds checksum f o r b l o c k i n t o p a s s e d - i n
: checksum.

; C a l l a s :
; vo id ChecksumChunk(uns igned char *Buf fe r .
: u n s i g n e d i n t B u f f e r L e n g t h . u n s i g n e d i n t * C h e c k s u m) ;

; where:
; B u f f e r = p o i n t e r t o s t a r t o f b l o c k o f b y t e s t o checksum
; B u f f e r L e n g t h - # o f b y t e s t o checksum (0 means 64K. n o t 0)
; Checksum = p o i n t e r t o u n s i g n e d i n t v a r i a b l e checksum i s
; s t o r e d i n

: P a r a m e t e r s t r u c t u r e :

Parms s t r u c
dw ? ;pushed BP
dw ? : r e t u r n a d d r e s s

B u f f e r dw ?
B u f f e r L e n g t h dw ?
Checksum dw ?
Parms ends

.model smal l

.code
p u b l i c _ChecksumChunk

-ChecksumChunk p r o c n e a r
push bp
mov bp.sp
push s i ; s a v e C ' s r e g i s t e r v a r i a b l e

c l d ;make LODSB i n c r e m e n t SI
mov s i . [b p + B u f f e r l ; p o i n t t o b u f f e r
mov c x . [b p + B u f f e r L e n g t h l ; g e t b u f f e r l e n g t h
mov bx.[bp+Checksuml : p o i n t t o checksum va r iab le
mov d x , [b x l ; g e t t h e c u r r e n t c h e c k s u m
sub ah,ah ; s o A X will be a 1 6 - b i t v a l u e a f t e r LODSB

1 odsb ; g e t t h e n e x t b y t e
add dx.ax :add i t i n t o t h e checksum t o t a l
l o o p ChecksumLoop : c o n t i n u e f o r a l l b y t e s i n b l o c k
mov [b x] , dx ; s a v e t h e new checksum

pop s i ; r e s t o r e C ' s r e g i s t e r v a r i a b l e

r e t

end

ChecksumLoop:

POP bp

- ChecksumChunk endp

Note that in Table 1.1, optimization makes little difference except in the case of
Listing 1.5, where the design has been refined considerably. Execution time in the
other cases is dominated by time spent in DOS and/or the C library, so optimization
of the code you write is pretty much irrelevant. What's more, while the approxi-
mately two-times improvement we got by optimizing is not to be sneezed at, it pales
against the up-to-50-times improvement we got by redesigning.

1 8 Chapter 1

By the way, the execution times even of Listings 1.6 and 1.7 are dominated by DOS
disk access times. If a disk cache is enabled and the file to be checksummed is al-
ready in the cache, the assembly version is three times as fast as the C version. In
other words, the inherent nature of this application limits the performance improve-
ment that can be obtained via assembly. In applications that are more CPU-intensive
and less disk-bound, particularly those applications in which string instructions and/
or unrolled loops can be used effectively, assembly tends to be considerably faster
relative to C than it is in this very specific case.

Don’t get hung up on optimizing compilers or assembly language-the best 1 optimizer is between your ears.

All this is basically a way of saying: Know where you’re going, know the territory, and
know when it matters.

Where We’ve Been, What We’ve Seen
What have we learned? Don’t let other people’s code-even DOS-do the work for
you when speed matters, at least not without knowing what that code does and how
well it performs.
Optimization only matters after you’ve done your part on the program design end.
Consider the ratios on the vertical axis of Table 1.1, which show that optimization is
almost totally wasted in the checksumming application without an efficient design.
Optimization is no panacea. Table 1.1 shows a two-times improvement from optimi-
zation-and a 50-times-plus improvement from redesign. The longstanding debate
about which C compiler optimizes code best doesn’t matter quite so much in light of
Table 1 .l, does it? Your organic optimizer matters much more than your compiler’s
optimizer, and there’s always assembly for those usually small sections of code where
performance really matters.

Where We‘re Going
This chapter has presented a quick step-by-step overview of the design process. I’m
not claiming that this is the only way to create high-performance code; it’s just an
approach that works for me. Create code however you want, but never forget that
design matters more than detailed optimization. Never stop looking for inventive
ways to boost performance-and never waste time speeding up code that doesn’t
need to be sped up.
I’m going to focus on specific ways to create high-performance code from now on.
In Chapter 5, we’ll continue to look at restartable blocks and internal buffering, in
the form of a program that searches files for text strings.

The Best Optimizer Is between Your Ears 1 9

	next:
	home:
	previous:

