
511

Practice, Practice,
Practice

Chapter 14

T
his chapter discusses specific ways you can revise software. Practices dealt with in
previous chapters are emphasized in this context. The approach used involves
examining code from Stripe 14, which you can find on the CD. Before making

changes to the code, the Ankh team first assessed the risks involved. An important part of
this activity centered on documenting and diagramming the areas of the system under
consideration and the reasons actions might be taken. Generally, why you might perform
such work depends on the context of your effort. For example, you might be responding
to user complaints, market pressures, or a technical imperative to optimize your code.
Revising the code for a game or any other software product presents an enormous field of
activity, and it’s impossible to cover very many of them in one short chapter. Still, a few
topics provide a good starting place:

■ Examining the stripes to find candidates for revision

■ Determining the more feasible options

■ Planning and justifying revisions

■ Estimating the effort required

■ Developing ways to test the revisions

■ Implementing the code

■ Revising supporting materials

■ Implementing the extension

Software Revision
In many environments, where a given game engine or game code framework (many devel-
opers consider an engine to apply only to graphical components) has met with technical

14_SoftwareEngineering.qxd 10/19/04 12:36 AM Page 511

and marketing success, those in executive positions wisely elect to revise rather than re-
create. Revision possesses superiority over re-creation after a successful release because
revision can almost always improve on an existing framework, whereas starting work on
a new product poses all the risks that usually accompany new efforts.

At the same time, revision poses numerous risks. Risks arise because executives, managers,
designers, and developers sometimes cannot resist the enthusiasm they feel when they
have initially released a successful game. The first impulse, rightfully, should be to follow
up with either an improved version of the first game or another game of the same type.
Following this impulse can lead to enormous profits because customers are willing to
invest in new versions of the games they like or games that are similar to those they like.
On the other hand, if developers act on unbridled impulses, risks result. One major risk
involves trying to cram a multitude of features into the new release. If you do such a thing,
you can create a game that is far more complex and far less perfect than the first. If defects
plague the game that follows on your success, you risk losing the victory you worked so
hard to earn.

Modifications
This chapter addresses revision in general, but some mention should be afforded at the
outset to one specific type of revision: modification. When you develop a modified (or
mod) game, you use the framework of an existing game and apply new themes and char-
acters to it. In essence, you present to the world a game you want to be viewed largely as
original. You do not present such a game to the world as a new release of an already estab-
lished game. It is simply a new game that resembles others. This can work well in many
instances. Some players want to play games that are modifications of older games. They
enjoy this type of product.

There is a subtle art to developing a mod successfully. Success rests in part on recogniz-
ing, from the first, the limitations and potentials that apply to mod development. One of
the first things to consider is that when you develop a mod, you do so to save development
expenses. If you embrace a given game framework as a starting point and then proceed to
rework it so extensively that you take as much or more time than you would have required
had you begun from scratch, you have clearly defeated your purpose.

Designing a modification involves giving attention to what you can do with the frame-
work as it exists rather than what you can do with the framework if you rework it. If you
do not take the time to evaluate the framework and use as much as possible those features
that it already possesses, you can easily end up involving yourself in a development effort
that easily equals or exceeds in complexity that of an original development effort. This
happens because when you rework existing code, you have to perform a great deal of
analysis that development of original code does not require.

Chapter 14 ■ Practice, Practice, Practice512

14_SoftwareEngineering.qxd 10/19/04 12:36 AM Page 512

Still, if you have a framework you want to revise, the economics of revision are well estab-
lished. Getting your money’s worth involves clearly identifying how you can get the most
from the revisions or extensions you make to the code you start with. Starting with a body
of well-tested, proven code is better than starting from scratch. You are assured success if
you take time to evaluate the effort involved in each action you intend to take. Such work
involves attending to the scope, complexity, maintainability, and extensibility of the
framework you are working with.

Scope and Complexity
Many case histories indicate that success with the development of a game can be haz-
ardous. A common scenario arises when an enthusiastic group of developers enjoys suc-
cess with a first release and has ample money with which to develop a second release. This
is where the trouble starts.

Such a group of developers can decide to concentrate their energies on modifying the first
release so that it incorporates an enormous number of untried, risky features. What
results is a product that customers do not like and developers regret ever having released.
This phenomenon offers an interesting area for psychological study.

The psychological issues that surface involve both software engineering and game design.
From the software engineering perspective, the issue is that the developers release a feature-
rich game that is plagued with defects. From the game design perspective, the issue is that
the customers—most of whom probably bought the second release because they were sat-
isfied with the first—express deep discontentment with the defects in the game and report
that they find the game dissatisfying to play.

From the software engineering perspective, the problems result because cramming a mul-
titude of new features into a limited framework is likely to overwhelm the design of the
framework. At a certain point, any container can become too small if you try to pack too
much into it. Games are like any other containers. Their design determines how much
they can be modified and extended.

From the perspective of the customer, the situation resembles that of someone who is
forced to take an advanced math course immediately after completing an elementary one.
The curve proves too steep. The feature richness is overwhelming. The comfort that the
player experienced playing the old game has been lost.

In both cases, development and design, a cybernetic or ecological quality can be said to gov-
ern the extent to which extensions or modifications can be made to the framework of the
game. To drive home this notion, many design experts strongly emphasize the notion of
KISS (Keep It Simple, Stupid). As harsh as this piece of advice might sound, it lies at the
root of a multitude of successfully extended or revised games. Enhancing an existing game

Software Revision 513

14_SoftwareEngineering.qxd 10/19/04 12:36 AM Page 513

(either as a new release or as a modification) provides an opportunity to increase player
satisfaction in an incremental way. The goal of design is to keep the primary experience
that the user has of the game consistent with what the user expects while improving the
game in ways that satisfy him. Each new feature should represent a gradual step up from
the old.

The same general rule applies to technical aspects of a game that are hidden from the play-
er. From the development perspective, controlling complexity involves restricting the
modifications you make. You must balance the scope of such an effort so that it does not
lead you to completely redesign the existing framework. Effective modifications involve
things like increasing performance, streamlining the user interface, and equipping the
game with better visual
qualities. They do not
involve starting from
scratch and creating a
“super game.” If you are
going to create a super
game, it is best to start
from scratch.

Figure 14.1 provides an
abstraction of the notion
of scope and complexity.
One pattern accommo-
dates a possibly endless
extension. The other
shows disjuncture and
fragmentation, implying
that the original design
does not anticipate the
newer extensions.

Technical Symmetry
Enhancing the hidden, technical properties of a game poses risks that are similar to those
that arise when you incorporate a vast array of new features visible to the user. The crux
of the problem lies in incorporating too much too soon. When too much too soon is
incorporated into a game framework, testing and other quality assurance measures can
receive short shrift. In addition, feature and functional proliferation can result in a prod-
uct that lacks technical symmetry. When a product possesses technical symmetry, its tech-
nical features consistently represent the same general level of engineering sophistication.
Nothing stands out in a glaring, ungraceful way.

Chapter 14 ■ Practice, Practice, Practice514

Figure 14.1
Consider at what point modifications can overburden the existing
framework.

14_SoftwareEngineering.qxd 10/19/04 12:36 AM Page 514

With respect to requirements that specify revisions to a software product, the metrics that
contribute to defining symmetry can include the number of logical decisions that a given
module includes, the anticipated effort that the implementation of the changes or addi-
tions involves, and the number of classes that must be revised. Many other criteria can
also be included.

Figure 14.2 provides graphical representations of symmetrical and asymmetrical patterns
of complexity. In the trends that Figure 14.2 depicts, the development team might ask why
one requirement possesses so much more complexity than the others. Is the feature focus
of the game to center on this one requirement? If this is the case, the requirement might
receive approval. But if this is not the case, the team should perhaps reconsider whether it
has adequately refined the requirement.

Gauging the Impact of Requirements
Complexity of implementation detail encompasses the number of changes or additions
that you make to the existing software to achieve new functionally. Consider the require-
ments that are named in Table 14.1. Suppose that these requirements represent first and
second releases of the same game.

Gauging the Impact of Requirements 515

Figure 14.2
An asymmetrical pattern of complexity begs the question of whether revisions have been refined
adequately.

14_SoftwareEngineering.qxd 10/19/04 12:36 AM Page 515

The two columns of requirements listed in Table 14.1 represent rough formulations, but
they still clearly convey requirements that differ substantially as to the extent to which
they require new functionality to be implemented. Consider, for example, revision
requirement 1, which concerns creating realistic effects for explosions. Taken literally, the
requirement makes it necessary for someone on the development team to possess a strong
knowledge of chemistry, because the requirement cannot be satisfied unless someone
establishes the combustion properties of the substances from which the target objects are
made. The way that a burning object appears to burn
depends on the combustion properties of the ele-
ments that compose it. If the developers for this
game were held to the requirement, they would face
an enormous task, one that is widely separated from
the current requirement. The question then arises as
to whether the scope of the current requirement
anticipates that of the revision.

Consider the revision of current requirement 2,
which concerns the sounds that characters make as
they are affected by the actions in the game. Suppose
that the way the gameplay affects players can be cat-
egorized in four basic ways, as Figure 14.3 illustrates.

What tasks are associated with implementing sounds that convey these categories of plea-
sure and pain? First, the developers have to identify the significant interactions that define
the lives of the characters. Second, they must categorize these interactions to accord with

Chapter 14 ■ Practice, Practice, Practice516

Table 14.1 Requirements Comparisons for Revision

No. Current Requirement Revision Requirement

1 The game shall feature wavering The game shall feature effects
images that resemble fire whenever for any object designated as a
a targeted object explodes. target such that when the target

explodes, the flames produced shall
precisely simulate those of the
materials composing the target.

2 The game shall feature sounds that The game shall precisely imitate the
mark the death or injury of characters. sounds of characters as they are

injured, killed, or otherwise affected
by actions in the game.

3 Networked players shall be able to Networked players shall be able to
communicate with each other. communicate with each other during

gameplay via written, voice, and video
communications on a real-time basis.

Figure 14.3
The simple utility of pleasure and
pain.

14_SoftwareEngineering.qxd 10/19/04 12:36 AM Page 516

the states of pleasure and pain. Beyond this, the software developers must provide the
functionality that looks up the sound that is assigned to each interaction. The developers
might ask how much the revision requirement exceeds the current requirement in terms
of complexity.

The final set of requirements, current and revision requirements 3, concerns player inter-
actions through an Internet-distributed game. The revision requirement contains some
involved new functionality. It is not possible to tell from the information given how the
developers implemented current requirement 3, but they might have simply linked the
game to a browser. A dialog box display of online players might have provided these links.

Consider again the possibility of making use of browser capabilities to implement revi-
sion requirement 3. Through instant messaging and video streaming, everything might be
covered. The difficulty then lies once again in developing local features that allow players
to connect to each other using browser capabilities. But then the implications of the
requirement are that players connect in the context of play. Suppose that the context of
play is an RPG. In this context, players appear or disappear according to the visibility that
the game gives them. Game sessions conform to either elective or assigned player interac-
tions, and a database tracks sessions over periods extending from minutes to hours.

Suddenly, the complexity of the game could increase in an enormous way, with the demand
that if an extended server system does not already support the game, one will have to be
developed to do so. Add to this that some type of architecture must be developed to accom-
modate the way that the game clients open and close communication sessions.

As all three sets of requirements in Table 14.1
reveal, the complexity that is introduced into a
game can increase exponentially if the team does
not make an effort to refine requirements for
revisions according to the impact they might
have on both the system and the development
effort.

Linear Growth in Complexity
One simple approach to controlling the complex-
ity that requirements for revisions might impose
on a game involves maintaining a linear gradient
in the growth of the complexity that you allow
requirements for revisions to create. Such a gradi-
ent can apply to a system, a module, or a compo-
nent. Figure 14.4 illustrates a linear complexity
growth model.

Linear Growth in Complexity 517

Figure 14.4
Complexity that grows on a linear basis
guards against overwhelming development
tasks and products that lose their symmetry.

14_SoftwareEngineering.qxd 10/19/04 12:36 AM Page 517

In Figure 14.4, r2 designates the revised or resultant complexity, whereas r1 designates the
existing complexity of the system. Determining complexity is difficult. (Discussion of this
topic appears in Chapter 12,“Numbers for Nabobs.”) It suffices in this context to note that
the number of decision points or calls within an operation serves as a simple measure of
complexity.

The prevailing risk that revision
presents centers on quality.
Consider, for example, what
happens if you extend a thor-
oughly tested, successful game
framework by quickly imple-
menting a set of highly visible
features that possess glaring
technical and aesthetic flaws.
The results almost inevitably
ruin the player’s experience and
damage the game’s reputation.
Figure 14.5 shows what happens
as the complexity of require-
ments increases. If your team
has achieved a high level of test-
ing coverage for the functionali-
ty of the game over its successive
releases, quality is compromised
if your team creates require-
ments that call for implemented
functionality that you do not
have time or resources to test.

Determining the Scope of Revisions
As a software developer, you might not enjoy the prerogative of deciding when the prod-
uct you work with is to be revised. That prerogative might reside with the marketing or
customer support group. On the other hand, it’s almost always the prerogative of the engi-
neering group to challenge or question the scope of revisions. In fact, not doing so con-
stitutes, in some respects, a failure to perform. If your company has successfully released
a product, you endanger the success each time you revise it. A product enjoys what might
be viewed as a natural product life. (Its utility or appeal is almost always destined to
diminish after months or years.) Nonetheless, if a revised version of the product possess-
es substantial flaws, the engineering effort kills the product long before its market viabil-
ity might come to an end.

Chapter 14 ■ Practice, Practice, Practice518

Figure 14.5
If you sustain the same level of test coverage across all
aspects of your revision effort and the same level of test cov-
erage from revision to revision, it is likely that your product is
evolving in a consistent, linear way.

14_SoftwareEngineering.qxd 10/19/04 12:36 AM Page 518

In addition to life in the consumer marketplace, a software product can face problems
when one company sells it to another. Cultures of development treat products in different
ways. If a poorly designed but feature-rich product moves from a company that is deficient
in design capabilities to a company that excels in design capabilities, the feature status of
the game can suffer. This occurs because the engineers who are employed for the acquiring
company might decide to put aside feature changes while they rework the architecture.

You can reduce the risks of neglecting product strengths if you create a scope document
that balances the general ways in which products can be revised. A scope document
defines the general intention of the release. Consider the following points of departure:

■ New features. The revision aims to incorporate new features. The existing design
adequately supports these features.

■ Design extension. The revision aims to incorporate substantial new features that
require extension of the design.

■ Component merger. The revision aims to merge existing components. The focus
of the effort is on the implantation of interfaces that make this merge possible.

■ Fixes and optimizations. The revision aims at fixes and optimizations. No changes
to the architecture or functionality of the game are anticipated.

If you take time to consider, generally, the primary objectives of your revision effort, you
immediately put in place a thematic focal point for deliberations about what revisions are
acceptable and what the scope of the revision effort should be.

Changes to Ankh
When the development team proposed revision of Ankh, its revisions were limited to opti-
mizations. Arriving at the decisions about what to revise required several sessions of
debate. The process involved accumulating suggestions and evaluating risks.

To conduct a review of proposed revisions, you can treat the whole process like a require-
ments gathering session. Participants in the sessions should come prepared to propose
requirements for the release. Suggested revisions can be recorded formally and subjected
to preliminary debate.

Optimization Candidates
When the team examined Ankh for potential revisions, its members proposed several
options. Among the options considered were the following:

■ High resolution. Increasing the game resolution would make the game more
attractive visually. After a first pass through the development of the code, refitting
the assets and some of the classes with enhanced capabilities would be a relatively
easy way to improve the game.

Changes to Ankh 519

14_SoftwareEngineering.qxd 10/19/04 12:36 AM Page 519

■ Real-time. Ankh is a turn-based game. Making it into a real-time game would give
it a different flavor. Developing an AI that uses real-time capabilities would offer
opportunities to make the game framework open to different teaching and learn-
ing scenarios. For example, both turn-based and real-time modules might be made
available to those who want to rework the code for their own purposes.

■ Component optimization. Numerous technical features of the game were not
designed as thoroughly the first time through as they might have been. Among
those was the way compression capabilities of DirectX were used. The capabilities
were enhanced during a recent release of DirectX. Another item of concern was the
performance hit that resulted when vectors were used instead of hashes.

■ Multiplayer. The game could be made multiplayer as a way to enhance its appeal
and demonstrate different development options.

These and other ideas emerged at different times as the team intermittently discussed
revising the game. All suggestions were general at first but represented real possibilities for
all members of the team.

General Risk Assessment
Assessing the general risks that proposed revisions pose sometimes requires a great deal
of effort. That’s because different team members favor different revisions. It is hard to
relinquish an idea that you have for revision of a system you have worked on for weeks or
months. Some of the discussion was fairly heated for the Ankh team, even going so far as
to involve position papers. The risk assessment sessions rendered the following decisions:

■ High resolution. The team rejected this revision because it offered little that gen-
uinely enhanced the game and did not provide enough opportunities to change
the code in ways that might be suitable for this book. (Needless to say, such a rea-
son would not usually arise in most commercial game development efforts.)

■ Multiplayer. Modifying the game to be multiplayer arose as an interesting option,
and no one voiced strong objections to it. This revision seemed to be an accept-
able—if somewhat unexciting—prospect. Reasons for rejecting this revision arose
when the team considered that changing the game to multiplayer would bring only
minor overall benefit to the game but require a fairly extensive set of changes.

■ Component optimization. The team realized that component optimization was
the best option when it became evident that the game could be enhanced in a vari-
ety of ways and that the enhancements could be distributed over a set of seven
areas of the system that ranged from minor to involved in complexity. Distribution
of the effort over seven tasks minimized the overall impact that the inability to
implement any one task might present. On the other hand, overall system quality
would be enhanced with the completion of any or all of the revisions.

Chapter 14 ■ Practice, Practice, Practice520

14_SoftwareEngineering.qxd 10/19/04 12:36 AM Page 520

■ Real-time. The debate over real-time optimization of the game was prolonged and
extensive. Some on the team favored the idea of real-time because it would provide
the game with a framework that many people would find interesting. The down-
side of real-time optimization was the amount of work that such an optimization
would involve in duplicating the AI and other modules.

Optimization Selections
The Ankh team decided to put
aside all proposed revisions
except those involving optimiza-
tion of performance. Such per-
formance optimizations affected
immediately visible features of
the game, such as the opening
dialogue. (See Figure 14.6.) The
central task became one of iso-
lating the optimizations that
would achieve this end. Among
the candidate optimizations were
the following:

■ Revise CResourceMgr to
replace vectors with
hashes. With respect to
sort and find operations,
hashes provide greater effi-
ciency than vectors. They
are also relatively easy to
implement.

■ Revise CImage so that it uses DirectX-compressed textures in addition to normal
textures. The class would have to load textures with a *.dxt extension, but it would
also be able to use *.png and *.jpg files. Consideration of this change led to discus-
sion of ways that users might be able to create suitable files for the game. Photoshop
and a utility that is packaged with the DirectX Software Development Kit (SDK)
enable system users to convert files to these formats. This change would result in
the use of less memory, generally, so increased performance would likely result.

Changes to Ankh 521

Figure 14.6
Performance impacted the smoothness with which even the
images showing the background story displayed.

14_SoftwareEngineering.qxd 10/19/04 12:36 AM Page 521

■ Revise CTileMap, CGraphics, and CWorld so that the game does not draw the tile
map to nonvisible areas. This optimization would involve increasing the sensitiv-
ity of the software to detect when tiles need to be refreshed. If there’s no change to
the area that encompasses the tile, there’s no reason to refresh the tile.

■ Revise CTileMap so that nothing is drawn below the surface created by the tiles.
This would reduce the amount of work that the graphics card has to do. (See
Figure 14.7.)

■ Revise CWorld so that drawing orders are changed. For example, buildings should
be drawn first. Anything that is behind the Z buffer would not have to be drawn.
This optimization would also eliminate all instances that allow the same part of
the screen to be drawn twice.

■ Revise CMesh so that state changes are minimized. One measure would be to
detect whether characters or buildings are off the screen. If so, they should not be
redrawn. (See Figure 14.8.)

Chapter 14 ■ Practice, Practice, Practice522

Figure 14.7
Tuning operations involving the Z buffer increase performance.

14_SoftwareEngineering.qxd 10/19/04 12:36 AM Page 522

■ Revise CEmitter so that it is updated while drawing. The original approach to
developing the emitter did not follow the code model given in the SDK. Following
the model would increase performance.

Ranks of Difficulty and Priority
Ranking the risks posed by difficulty involved considering the scope of the changes to be
made, the effort required, and the technical complexity of the changes. The team could
assess the risk that the implementation of a given change posed against the benefit that the
change promised. Given limited time and resources, how much would benefits justify risks?
Changes that pose few risks but also bring few increases in performance or aesthetic rich-
ness should probably receive low priority. Extensive change resulting in few benefits poses
a high-risk situation and likewise merits low priority. Changes that pose high risks but
bring large increases in performance or aesthetic richness should receive a high priority.

Such reasoning stands up in regular test situations. For example, if testers or users find a
defect that crashes the game, the result clearly affects both performance and aesthetic

Changes to Ankh 523

Figure 14.8
Achieving efficiency in the order in which the system paints tiles, buildings, and other meshes
was one objective of the proposed revisions.

14_SoftwareEngineering.qxd 10/19/04 12:36 AM Page 523

richness in an extensive way. Removing a fatal error always amounts to an extensive
change. Thus, you are justified if you assign the change high priority.

Table 14.2 shows a risk-rank view of the classes considered for change. Notice that CMesh
receives first priority. Even though it poses the greatest risk, it results in the greatest benefit.
Changing CResourceMgr involves making changes to almost every member operation it con-
tains but results in a net gain to system performance and aesthetic richness that is marginal.

Evaluating Classes and Operations
To arrive at estimations of how changes or additions can impact a system, you must
inspect the code that the changes impact. For example, the Ankh team could not establish
the risks and priorities documented in Table 14.2 until it had opened the files containing
the classes and carefully examined the operations and attributes that the classes contained
to determine how much the changes would be likely to result in altered code.

Revisions to CResourceMgr

The scope of changes involved in revising CResourceMgr was extensive. Changing vectors
to hashes affected almost every operation. Making this set of changes received low prior-
ity even though, in terms of complexity, it posed low risk. In such situations, you can look
at the work from different perspectives. One thing to consider is that making extensive
changes to a class that communicates with many other classes, even if the changes appear
trivial, can result in a testing nightmare. This was one factor that had bearing on the rat-
ing of the change. Again, however, the changes were not considered all that difficult, so the
testing effort was not deemed a major issue (probably much to the team’s hazard). In this
case, the tradeoff between the work needed to make the changes and the net gain in per-
formance pushed the set of changes to the tail end of the priority list.

Changes to CMesh

Changing CMesh to reduce the number of state changes and prevent buildings and char-
acters that were not onscreen from being drawn involved altering CMesh:Draw() and

Chapter 14 ■ Practice, Practice, Practice524

Table 14.2 Ranking of Revision Risks

Rank Risk Priority

1 CMesh—Most Risk CMesh—First Priority
2 CEmitter CEmitter
3 CWorld CImage
4 CTileMap CWorld
5 CImage CTileMap
6 CResourceMgr CResourceMgr

14_SoftwareEngineering.qxd 10/19/04 12:36 AM Page 524

CWorld:Draw(). The complexity of this one operation was a good indication of the over-
all complexity of CMesh. The change involved work with approximately 130 lines of code
in the implementation file. It presented a relatively complex testing situation.

Scope of CMesh Changes

Figure 14.9 shows partial details of a UML class diagram representing the attributes and
operations of CMesh. Two salient features are the Draw() operation and the CImage objects.
The Draw() operation has a DWORD parameter. The UML diagram adequately details most
of the complexity, but one point of concern arises with an association in the Draw() oper-
ation with a pointer to a CGraphics object. The CGraphics object is global, declared in the
util.cpp file. An Ankh class, CImage, forms several aggregations with CMesh. These, howev-
er, do not directly impact the Draw() operation. Generally, changes to the operation
involve attending to messages among CMesh, DirectX objects, and CGraphics.

Changes to Ankh 525

Figure 14.9
A UML class diagram reveals most of the
complexity of CMesh.

14_SoftwareEngineering.qxd 10/19/04 12:36 AM Page 525

The Code

A final step in assessing risk and planning changes involves going to the code. In some
instances, you must add operations. In other instances, additions aren’t necessary.

The operation that was central to limiting state changes and changing the visibility of
meshes centered on the Draw() operation. Because the implementation of the operation
consumed approximately 130 lines of code, it was a somewhat large operation.
CMesh:Draw() contained calls to CMesh:Update() and CMesh:DrawFrame(), adding to the
complexity:

///
// CMesh::Draw() //
// Draws the mesh. //
///
void CMesh::Draw(DWORD dwColor)
{

if(dwColor != D3DCOLOR_XRGB(255,255,255))
{

D3DXCOLOR color(dwColor);
m_matColor.Diffuse = color;
m_matColor.Ambient = color;
m_bColoredDraw = true;

}
else
{

m_bColoredDraw = false;
}

if(m_bSkinned)
{

Update();
DrawFrame(m_pRootFrame);
return;

}
// For each material, render the polygons that use it
for(DWORD i=0; i<m_dwNumMaterials; i++)
{

// Set the material and texture for this subset
if(m_bColoredDraw)

{
Graphics->GetDevice()->SetMaterial(&m_matColor);

}
else
{

Graphics->GetDevice()->SetMaterial(&m_pMaterials[i]);
}

if(m_imgBumpMap && Graphics->GetBumpMapping())
{

Chapter 14 ■ Practice, Practice, Practice526

14_SoftwareEngineering.qxd 10/19/04 12:36 AM Page 526

// Set the direction of the light for the bump mapping
D3DLIGHT9 light;
Graphics->GetDevice()->GetLight(0,&light);
D3DXVECTOR3 vec = light.Direction;
DWORD dwTFactor = VectorToRGB(&vec);
Graphics->GetDevice()->

SetRenderState(D3DRS_TEXTUREFACTOR,dwTFactor);
if(Graphics->GetDetailMaps()>0)
{

// Scale the detailmap
D3DXMATRIX matTexture;
D3DXMatrixScaling(&matTexture,4,4,4);
Graphics->GetDevice()->

SetTransform(D3DTS_TEXTURE3,&matTexture);
Graphics->GetDevice()->
SetTextureStageState(3,

D3DTSS_TEXTURETRANSFORMFLAGS,D3DTTFF_COUNT2);
}
else
{

Graphics->GetDevice()->
SetTextureStageState(3,
D3DTSS_TEXTURETRANSFORMFLAGS,D3DTTFF_DISABLE);

}
Graphics->GetDevice()->SetTextureStageState(1,

D3DTSS_TEXTURETRANSFORMFLAGS,
D3DTTFF_DISABLE);

Graphics->GetDevice()->
SetTextureStageState(
2, D3DTSS_TEXTURETRANSFORMFLAGS,
D3DTTFF_DISABLE);

// Bump map pass
Graphics->GetDevice()->SetTextureStageState(
0,D3DTSS_COLORARG1,D3DTA_TEXTURE);
//normal
Graphics->GetDevice()->SetTextureStageState(
0,D3DTSS_COLORARG2,D3DTA_TFACTOR);
//light vector
Graphics->GetDevice()->SetTextureStageState(
0,D3DTSS_COLOROP,D3DTOP_DOTPRODUCT3);
// Render the texture
Graphics->GetDevice()->SetTextureStageState(

1, D3DTSS_COLORARG1, D3DTA_TEXTURE);
Graphics->GetDevice()->SetTextureStageState(

1, D3DTSS_COLORARG2, D3DTA_CURRENT);
Graphics->GetDevice()->SetTextureStageState(

1, D3DTSS_ALPHAARG1, D3DTA_TEXTURE);
Graphics->GetDevice()->SetTextureStageState(

1, D3DTSS_ALPHAARG2, D3DTA_DIFFUSE);
Graphics->GetDevice()->SetTextureStageState(

Changes to Ankh 527

14_SoftwareEngineering.qxd 10/19/04 12:36 AM Page 527

1, D3DTSS_COLOROP, D3DTOP_MODULATE2X);
Graphics->GetDevice()->SetTextureStageState(

1, D3DTSS_ALPHAOP, D3DTOP_MODULATE2X);
// Add the lighting

Graphics->GetDevice()->SetTextureStageState(
2,D3DTSS_COLORARG1,D3DTA_CURRENT); //normal
Graphics->GetDevice()->SetTextureStageState(
2,D3DTSS_COLORARG2,D3DTA_DIFFUSE); //light vector
Graphics->GetDevice()->SetTextureStageState(
2,D3DTSS_COLOROP,D3DTOP_MODULATE);
// Detail map it
if(Graphics->GetDetailMaps()>0)
{

Graphics->GetDevice()->SetTextureStageState(
3, D3DTSS_COLORARG1, D3DTA_TEXTURE);
Graphics->GetDevice()->SetTextureStageState(
3, D3DTSS_COLORARG2, D3DTA_CURRENT);
Graphics->GetDevice()->SetTextureStageState(
3, D3DTSS_COLOROP, D3DTOP_MODULATE2X);
Graphics->GetDevice()->SetTextureStageState(
3, D3DTSS_TEXCOORDINDEX, 1);
Graphics->GetDevice()->SetTexture(
3, m_imgDetail->GetTexture());

}
else
{

Graphics->GetDevice()->SetTexture(3,NULL);
Graphics->GetDevice()->SetTextureStageState(
3,D3DTSS_COLOROP,D3DTOP_DISABLE);

}

// Set up the textures; stage 0 is the
// bump map, and stage 1 is the texture
Graphics->GetDevice()->SetTexture(
0, m_imgBumpMap->GetTexture());
Graphics->GetDevice()->SetTexture(
1, m_imgTextures[i]->GetTexture());

}
// No bump map, just a regular texture
else if(m_imgTextures && m_imgTextures[i])
{

Graphics->GetDevice()->SetTexture(
0, m_imgTextures[i]->GetTexture());
Graphics->GetDevice()->SetTexture(1, NULL);
Graphics->GetDevice()->SetTexture(2, NULL);

}
// No texture!
else
{

Chapter 14 ■ Practice, Practice, Practice528

14_SoftwareEngineering.qxd 10/19/04 12:36 AM Page 528

Graphics->GetDevice()->SetTexture(0, NULL);
}

// Draw the mesh subset
m_pMesh->DrawSubset(i);

Graphics->GetDevice()->SetRenderState(
D3DRS_ALPHABLENDENABLE,TRUE);

}

// Reset to default state
Graphics->GetDevice()->SetTextureStageState(

0, D3DTSS_COLORARG1, D3DTA_TEXTURE);
Graphics->GetDevice()->SetTextureStageState(

0, D3DTSS_COLORARG2, D3DTA_DIFFUSE);
Graphics->GetDevice()->SetTextureStageState(

0, D3DTSS_COLOROP, D3DTOP_MODULATE);
Graphics->GetDevice()->SetTextureStageState(

1, D3DTSS_COLOROP, D3DTOP_DISABLE);
Graphics->GetDevice()->SetTextureStageState(

2, D3DTSS_COLOROP, D3DTOP_DISABLE);
Graphics->GetDevice()->SetTextureStageState(

3, D3DTSS_COLOROP, D3DTOP_DISABLE);
}//end Draw()

Other Changes

Unfortunately, page constraints prohibit a detailed discussion of all changes to the Ankh
system. However, by using such tools as UML diagrams, code inspections, and generalized
risk assessment and priority ratings, the team was able to discern how to proceed with
revisions. The revisions that this chapter shows represent only minor changes. Such
changes do not necessarily characterize industry practices, but it is common for a prod-
uct revision to consist of numerous minor changes.

The revisions that were designated to become Stripe 15 of Ankh were symmetrical. In
other words, all revisions required modifications of 1–3 member operations. Likewise, all
required modifications took no more than three classes. The following list summarizes the
revisions:

■ Changes to CWorld. Changes to CWorld supplemented those to CMesh. The change
that received first priority involved reducing the number of state changes. This
class was involved in two revisions. Because of this fact, the team had to assess
whether the two revisions would conflict with each other. The revisions did con-
flict. Both the work to eliminate redundant drawing and to detect objects drawn
below the tile surface involved making changes to CWorld:Draw(). The team dealt
with the situation by coordinating activities so that those involved in making the
changes were aware of what the other was doing and could assess how to order
their activities to prevent rework.

Changes to Ankh 529

14_SoftwareEngineering.qxd 10/19/04 12:36 AM Page 529

■ Changes to CEmitter. Changing CEmitter so that it would draw particles and
chunks with greater efficiency involved altering CEmitter:Draw(). Like the changes
to CMesh, the changes to CEmitter required work up front to determine the scope
of the changes and the risks involved.

■ Revisions to CImage. The second lowest risk was assigned to CImage. Because it
allowed the system to reduce memory use and speed performance in fairly sub-
stantial ways, it was ranked third in priority. This revision involved changes to
CImage::Load().

■ Revisions to CTileMap, CGraphics, and CWorld. This set of revisions centered on
reducing drawing to nonvisible areas. After some analysis, the team determined
that only CTileMap:Draw() and CWorld:Draw() required revision.

■ Changes to CTileMap. Revisions to eliminate drawing below the tile map involved
changes to CTileMap:Draw().

Specifying Revisions
You can specify revisions in the same way that you specify primary functionality. You can
create a software requirements specification for the revision. The requirements specifica-
tion for revisions must refer to the primary requirements, if possible, so that you can
examine the requirements for revision to determine whether they conflict with the pri-
mary requirements. Following are the basic scenarios for merging requirements:

■ Extension. If you consider the changes made to Ankh, the use of the compressed
format for asset files constituted an extension of existing functionality. The team
retained the old functionality, because if the system encountered *.jpg files, for
instance, they would still be read. The revision made possible the automatic com-
pression of files.

■ Substitution. The use of hashes to replace vectors in the CResourceMgr class repre-
sented substitution. In this instance, the team decided that the hash container was
superior to the vector container. However, the operational interface of the hash
container differed little from the vector container, so much of the work involved
replacing the container instances. Of course, even though the operational inter-
faces of the two classes displayed extensive similarities, testing was necessary to
establish the success of the substitution.

■ Supersession. The changes to CEmitter constituted an instance of supersession.
The change fell under this heading because the implemented code provided a
superior solution to the problem, one that used components and algorithms that
spoke of an evolved understanding of the problem and its solution. Supersession
implied that the resulting code would provide the same functionality as the old
code. The moment of supersession arrived with the superior way that the code
provided the functionality.

Chapter 14 ■ Practice, Practice, Practice530

14_SoftwareEngineering.qxd 10/19/04 12:36 AM Page 530

■ Conflict. As an example of a conflict, consider that if the Ankh team had enhanced
the game so that it could be displayed only on high-resolution monitors, it might
have excluded the vast majority of its prospective customer group. A nonfunc-
tional requirement for Ankh might state that the game shall be executable using
the widest possible variety of graphics cards.

Use Case Confirmation
Generally, when you engineer requirements for revisions, you can follow the same proce-
dures that you follow when you develop requirements for a system you construct from
scratch. Accordingly, regarding the prospective changes to the functionality supported by
CMesh, a requirement might read

The system shall restrict painting of meshes to the plane that is defined by the
floor of the level.

Given this beginning, you could then create a use case to test the general conceivability of
the requirement. Figure 14.10 illustrates a possible use case.

Use Case Confirmation 531

Figure 14.10
A use case serves as a proof of
concept for the requirement.

14_SoftwareEngineering.qxd 10/19/04 12:36 AM Page 531

Configuring Revisions
When you determine the scope of a revision, you establish on the most basic level which
classes and other components your revisions will affect. To plan the configuration of a
revision, you can create a configuration management plan (or update the existing plan).
You should name the impacted files and show how to configure them to most effectively
facilitate the development effort.

Designing Revisions
The extent to which revisions impact the existing system design depends largely on
whether you need to add or factor components. The impact of breaking existing compo-
nents into new components is greater in most cases than adding new components. That’s
because if one class (a client) depends on another (a server), the server is likely to impact
the client if its operations are moved to classes with different names.

The need to factor did not arise with the revisions that the team proposed for Ankh. For
example, most of the interactions of the CMesh operations involved DirectX, Boost, and
CGraphics objects. In Figure 14.11, the package symbols represent the DirectX and Boost
libraries, and the composition associations indicate that objects from these libraries sup-
port operations in CMesh. The CImage object relates to the CMesh object on the basis of
aggregation. The object from the CGraphics class is declared globally. Calls using its oper-
ations occur within the CMesh:Draw() operation. Extending the functionality of the CMesh
class involves no changes to the existing design.

Chapter 14 ■ Practice, Practice, Practice532

Figure 14.11
The scope of the changes extends over the DirectX, Boost, and a few Ankh classes.

14_SoftwareEngineering.qxd 10/19/04 12:36 AM Page 532

Implementing Revisions
One contributing factor to successful implementations of releases involves precisely iden-
tifying the components that the release requires you to revise. Identification of components
enables you to operate surgically, first changing key operations within existing classes and
then testing these through integration with the largely unchanged whole. In the instance of
the changes to CMesh, the team identified CMesh:Draw() as the primary target for changes.
The following body of code resulted from the revision of CMesh:Draw():

void CMesh::Draw(DWORD dwColor)
{

// Set the material/color. The color is not WHITE.
if(dwColor != D3DCOLOR_XRGB(255,255,255))
{

D3DXCOLOR color(dwColor);
m_matColor.Diffuse = color;
m_matColor.Ambient = color;
m_bColoredDraw = true;

}
else

m_bColoredDraw = false;
// If you’re skinned, call DrawFrame instead

if(m_bSkinned)
{

Update();
DrawFrame(m_pRootFrame);
return;

}

// For each material, render the polygons that use it
for(DWORD i=0; i<m_dwNumMaterials; i++)
{

// Set the material and texture for this subset
if(m_bColoredDraw)

Graphics->GetDevice()->SetMaterial(&m_matColor);
else

Graphics->GetDevice()->SetMaterial(&m_pMaterials[i]);

if(m_imgBumpMap && Graphics->GetBumpMapping())
{

// Set the direction of the light for the bump mapping
D3DLIGHT9 light;
Graphics->GetDevice()->GetLight(0,&light);
D3DXVECTOR3 vec = light.Direction;
DWORD dwTFactor = VectorToRGB(&vec);
Graphics->GetDevice()->SetRenderState(

D3DRS_TEXTUREFACTOR,dwTFactor);
if(Graphics->GetDetailMaps()>0)

{

Implementing Revisions 533

14_SoftwareEngineering.qxd 10/19/04 12:36 AM Page 533

Graphics->ApplyStateBlock(“MeshDetailAndBumpMap”);
Graphics->GetDevice()->SetTexture(

3, m_imgDetail->GetTexture());
}
else
{

Graphics->GetDevice()->SetTexture(3,NULL);
Graphics->GetDevice()->SetTextureStageState(

3,D3DTSS_COLOROP,D3DTOP_DISABLE);
Graphics->ApplyStateBlock(“MeshBumpMap”);

}
// Set up the textures; stage 0
// is the bump map, and stage 1 is the texture

Graphics->GetDevice()->SetTexture(
0, m_imgBumpMap->GetTexture());

Graphics->GetDevice()->SetTexture(
1, m_imgTextures[i]->GetTexture());

}
// No bump map, just a regular texture
else if(m_imgTextures && m_imgTextures[i])
{

Graphics->GetDevice()->SetTexture(
0, m_imgTextures[i]->GetTexture());

Graphics->ApplyStateBlock(“MeshNoBumpMap”);
}
// No texture!
else

Graphics->GetDevice()->SetTexture(0, NULL);
// Draw the mesh subset

m_pMesh->DrawSubset(i);
Graphics->GetDevice()->SetRenderState(

D3DRS_ALPHABLENDENABLE,TRUE);
}

// Reset to default state
Graphics->ApplyStateBlock(“ResetTextures”);

}

Testing Revisions
Testing revision work differs little from testing the work of primary implementation. A
difference does distinguish the two types of work, however. When you revise a product,
your testing effort must concentrate on integration from the first. Testing components in
isolation is almost secondary. The reason for this should be clear. Even if a development
effort renders an excellent component, you cannot subordinate the operational integrity
of the entire system to the one component. Testing of the component should assume an
integration or system bias. In other words, if the component does not communicate with

Chapter 14 ■ Practice, Practice, Practice534

14_SoftwareEngineering.qxd 10/19/04 12:36 AM Page 534

the system, then the sanity of the system, rather than that of the component, should be
assumed first.

Developing test cases is covered in Chapter 11, “Evident Evil—The Art of Testing.” Here,
it is useful to show that you can develop a black-box test procedure from the use case illus-
trated in Figure 14.10. The test procedure allows you to access existing functionality of the
system and to operate the system so that it tests the new functionality. Figure 14.12 illus-
trates a test procedure for the revision.

As Figure 14.13 shows, you can use the character editor for Ankh to test the revised func-
tionality, which the test procedure stipulates.

Testing Revisions 535

Figure 14.12
A test black-box test procedure provides a convenient way to ver-
ify revised functionality.

14_SoftwareEngineering.qxd 10/19/04 12:36 AM Page 535

Conclusion
This chapter dealt with the dangers and advantages that you encounter when you revise a
game framework. Reference was made to a “game framework” in preference to “game
engine” because the emphasis has been on using an existing body of code, complete with
meshes, textures, and other assets, to create either a modified game or introduce a new
release of the existing game. No core set of functionality is necessarily implied, as would
be the case with a game engine.

The dangers that modifications or revisions pose usually originate with a failure to thor-
oughly investigate the scope of the proposed revisions. If you extensively alter an existing
framework, you can end up expending more effort than if you had started from scratch.
Given that the intention of revision encompasses reuse and improvement of an existing
body of code, revision proves worthwhile only if you selectively refine a limited portion of
the existing framework.

If you pursue several revisions, you can benefit from assessing the scope of the revisions
comparatively. A symmetrical relationship among revisions occurs when all of the revi-
sions possess roughly similar scopes. For example, most of the revisions proposed for
Ankh involved modifying or extending 1–3 classes. Had any one revision strayed far from
this range, it might have been appropriate to question it.

Chapter 14 ■ Practice, Practice, Practice536

Figure 14.13
The character editor provides a context for testing the new requirement.

14_SoftwareEngineering.qxd 10/19/04 12:36 AM Page 536

Planning revisions involves assessing risk and setting priorities. You can assess risk by
comparing the benefit to be derived from the proposed revision to the amount of work
required to bring about the revision. If the amount of work is disproportionate to the
improvement that the work will bring to the system, you should consider putting the revi-
sion aside. Along similar lines, if you are dealing with a set of revisions, you can reduce
risk by assessing which revision has the highest priority. Determining the priority of a
revision depends on such factors as how much work it requires, whether it poses high risk,
and what benefit it brings to the system. Other factors include whether the revision has
dependencies and whether failure to implement the revision poses a risk to the overall
revision effort.

Following are books that extend the discussion in this chapter:

Aßmann, Uwe. Invasive Software Composition. New York: Springer-Verlag, 2003.

Blunden, Bill. Software Exorcism: A Handbook for Debugging and Optimizing Legacy Code.
Berkeley, California: Apress, 2003.

Jacobson, Ivar, Martin Griss, and Patrick Jonsson. Software Reuse: Architecture, Process,
and Organization for Business Success. Reading, Massachusetts: Addison Wesley Longman,

1997.

Conclusion 537

14_SoftwareEngineering.qxd 10/19/04 12:36 AM Page 537

14_SoftwareEngineering.qxd 10/19/04 12:36 AM Page 538

