
469

Testing Simulations
and Event Models

chapter 12

This chapter centers on a few techniques and tools you can employ to test simulations
and event models. Testing begins with establishing approaches to depicting the
cognitive characteristics of a simulation. Toward this end, you can use an approach

to diagram the interactions that constitute a simulation. To accomplish this, you picture the
simulation as consisting of nodes, transitions, event contexts, and pathways of interaction.
To assess how completely you have employed the functionality you have developed as you
have implemented your simulation, you use the notion of “cognitive saturation.” To illus-
trate how to apply a cognitively oriented approach to testing, this chapter offers you a basic
simulation testing application, Inspect. Using a game developed in an earlier chapter (now
named Gold Finder), you generate test data. You then employ the test application to assess
the effectiveness of the simulation. The topics covered include the following, among others:

■ Conceptual foundations of testing simulation and event models

■ Approaches to evaluating systems, contexts, and interactions

■ Context influence

■ Path transitions

■ Using Insight to process data from Gold Finder

■ System Cognitive Saturation Index

The Effectiveness of Simulation
As Chapter 1, “What is Simulation?” emphasized, an event model determines the extent
to which your simulation can regenerate experiences. When you develop an event
model, your options vary according to the description of the project you are involved
with. Simulation can be characterized as having both subjective and objective aspects. A

12-Sim Game Dev-Ch12 7/16/05 12:50 PM Page 469

subjective approach to simulation emphasizes experiences that are not easily repeated
or summarized. An objective approach to simulation emphasizes experiences that can
be repeated and summarized.

In addition to classifying them according to subjective and objective descriptions, it is
also possible to regard simulations as static and dynamic. This approach to classifying
simulations originates in part with designer Suguru Ishizaki, who proposed that
computer application design efforts can proceed from two basic starting points. One
starting point is based on traditional views embodied in print and film media. Think of
a framed picture that you manipulate within a frame. You do not change the frame, only
the features you see framed. Such a view of design is static.

A dynamic approach to design involves thinking of a framed picture that can change both
its frame and what it depicts. This constitutes a dynamic approach to design. This
approach to design views an application as a context of elements that continuously
changes.

If you work in an industrial setting in which your job entails creating simulations for
games, you are likely to start with a static set of specifications for the application you want
to create and work toward satisfying these specifications. While a great deal of exploration
might characterize such a development effort, in the end, you face what can be described
as a standard design for the game. You implement the game according to the standard
design. What applies to game development also applies to other computer applications,
such as those used for training.

Another type of project places much less emphasis on the use of a standard template. In this
case, a dynamic design applies, for the template changes with use. Suguru Ishizaki refers to
such design efforts as “improvisational.” With respect to simulation, improvisational design
encompasses several of the ideas discussed in this book. Your development efforts involve
much more of the creation of contexts in which the constraints you introduce afford those
who use your application, not a static path of interaction that leads to a determined end, but
rather a fairly unlimited set of alternative paths to a multiplicity of ends.

Cognitive Saturation
In this chapter, you work with a software tool that measures a quality called cognitive
saturation. Cognitive saturation addresses both static and dynamic design activities. It
describes the interactive potentials of an application, and it is based on an assessment of the
extent to which given contexts of interaction possess potentials to lead application users to
discover other contexts of interaction. To calculate the cognitive saturation of a system of
interaction, you combine measurements of the potentials each node of interaction
possesses and the significance of the transitions and pathways that connect the nodes.

Chapter 12 ■ Testing Simulations and Event Models470

12-Sim Game Dev-Ch12 7/16/05 12:50 PM Page 470

To grasp cognitive saturation on a tactile level, consider a situation in which you have a
set of marbles. You place the marbles on the floor and begin playing with them. The play
constitutes a game. By the time you finish playing the game, you might have used all the
marbles or only a few. If your play involves all the marbles and leads you to make many
innovations, then the game possesses a high degree of cognitive saturation. The available
marbles and the actions you take toward them represent the cognitive structure of the
game. The more marbles you use and the more ways you find to interact with them, the
more you realize the cognitive structure the game offers. Realization of the cognitive
structure can be viewed as saturation.

Cognitive saturation measures satisfaction. If you use only a few marbles and make few
innovations as you play, then the degree of cognitive saturation remains low. You see a
number of marbles lying dormant and untouched after the play ends, and you do not feel
a great degree of satisfaction with the actions you have taken as you have played the game.

What applies to a game involving marbles applies to software. If you develop an application
that offers a hundred functional contexts and you find that, on the average, those who use
your application visit only ten, then the design of your application lacks conceptual balance.
It is likely that the lack of balance will become especially evident when you consider the
experiences the users report. If the users make use of only ten of one hundred options and
perhaps understand the application only in terms of these ten options, they are not likely to
express a high level of satisfaction. Much of your design and development effort will have
been wasted.

If cognitive saturation measures the effectiveness to which users actually use functionality,
it also measures the extent to which a system induces its users to investigate potentials.
When users investigate potentials, they find different pathways through the functionality
the system offers. The pathways of interaction present users with interesting challenges
that result in rich, new experiences. Such experiences alter their understanding of the
significance of the events the system maps.

Systems Significance
A system interaction provides significant experiences when it in some way allows its users
to change their understanding of a given set of events. As has been discussed in previous
chapters, understanding possesses subjective and objective characteristics. Understanding
also possesses characteristics that relate to logic. You can understand a group of events in
one way, using one set of rules and one path of reasoning to arrive at your understanding.
You can refer to this type of logic as mono-modal. On the other hand, you can understand
a group of events in a multitude of ways, using many sets of rules and following paths of
reasoning that vary with the feelings and perspectives you encounter as you experience the
events that constitute a given context of interaction.

The Effectiveness of Simulation 471

12-Sim Game Dev-Ch12 7/16/05 12:50 PM Page 471

You can associate subjective understanding with multi-modal reasoning and objective
understanding with mono-modal reasoning, but it is unlikely that any given analysis falls
into one or the other category. Testing systems of interaction using both perspectives is the
best approach, for you then have a way to adjust your tests so that you achieve useful results.
You might use tests that are objective and mono-modal to evaluate a control that allows
users to control a standard feature of a game; you might use tests that are subjective and
multi-modal to evaluate options concerning the appearance and position of the control.

Testing and interaction induce you to discover new ways to understand the system as you
work with it. You can use the concept of iconic logic to guide your activities in this respect.
When you evaluate a system using a logic that you find implicit in the system, then you
follow an iconic approach to logic, and your reasoning is multi-modal. On the other hand,
if you undertake this activity in an experimentally controlled manner, then your activity
takes on an objective description.

From an objective perspective, a simulation can originate with an explicitly defined
model. The model embodies understanding, but this type of understanding consists of
rules and events you have carefully described. When you participate in the simulation, you
discover facts about the model that allow you to improve on the model. In this respect, a
simulation brings the model to life in a dynamic way, so that you can critically evaluate
the model and improve it. See Figure 12.1.

From a subjective perspective, what applies to a model applies to subjective understanding.
The type of understanding consists of rules and events, but the rules and events are
purposely left in a complex, largely undefined condition. When you participate in such a
simulation, you transform and extend your understanding as an undifferentiated vehicle
for mediating experience. See Figure 12.2.

Chapter 12 ■ Testing Simulations and Event Models472

Figure 12.1 Significance arises from explicit understanding.

12-Sim Game Dev-Ch12 7/16/05 12:50 PM Page 472

The Significance of Interaction
Significance depends on interaction. If you cannot interact with a system, your lack of inter-
action restricts you to the role of an observer or spectator. Whether you view the use of your
product as a participant or a spectator heavily impacts the ways you conceptualize, design,
and test your product. Clearly, participatory simulations must be evaluated in terms of the
interactions they foster. Still, for many analysts, interaction constitutes a relative term. The
term is relative because its meaning depends on the analytical tools the analyst applies.
When you assess a system, among other things, you begin with certain assumptions about
how the elements that constitute the system (nodes and transitions, for example) should be
defined, measured, and tested. Ultimately, how you test for significance depends on the
approach you develop to measure how interaction can be significant.

Approaches to Diagrammatic Systems Evaluation
When you assess interactive systems using multi-modal logic, you can quantitatively analyze
the significance of event contexts (nodes) and scenario mappings (pathways) without
heavily encroaching on the integrity of someone who is interacting with the system. At the
same time, you are in a position to impose fairly high objective standards on your testing.

When you interact with a system, what you find significant depends on what you bring to
the experience of interacting with the system. When you design a system, however, you face
the problem of instilling in the system the play potentials that lead to rich experiences for
its users. Play potentials depend to a great extent on the cognitive complexity of the appli-
cation you develop. As mentioned previously, cognitive complexity relates to whether the
user of the system discovers its domain of potentials. You can characterize a domain of
potentials as the number of possible interactions the system makes available to its players.
Alone, however, a count of the possible interactions does not reveal the significance of the
experience the interactions create.

Approaches to Diagrammatic Systems Evaluation 473

Figure 12.2 Significance arises through implicit understanding.

12-Sim Game Dev-Ch12 7/16/05 12:50 PM Page 473

Interactions imply mappings of events, and event mappings relate to system transitions,
system event contexts, and the scenarios that emerge as you follow pathways of inter-
actions. The sections that follow provide extensive discussion of a model derived from
systems theory that you can use to assess the levels of cognitive saturation a system of
interaction supports. A software application, Inspect, embodies functionality that allows
you to put this model to use to test Gold Finder, which you explored in Chapter 9.

Nodes
Nodes are elements within a system. As the discussion in Chapter 2 emphasized, any
discernable entity or control can serve as a node of interaction. What creates a node is
whether the entity interacts with other entities or allows you to interact, as the user, with it.
To fairly assess the potentials the element offers for interaction involves avoiding assump-
tions that it does or does not possess only a specific set of interactive potentials. The case is
likely to be that while the element possesses the potentials designers have designed it to
possess, it possesses many others as well.

To test interactive potentials, you assign the discernable elements of a system a tentative
node status. Then, to avoid testing only for assumed potentials, you can begin your exam-
ination of the nodes of a system by first isolating them from each other. You isolate them
so that you can inductively establish that they do, in fact, possess properties that allow you
to associate them. Figure 12.3 illustrates a collection of elements viewed in this way. The
dotted line surrounding the collection signifies the tentative standing of the system of
interactions that join the elements together (properly transforming them into nodes).

In Figure 12.3, the nodes appear
as a collection bounded by a
dotted line. The dotted line is
the system boundary. System
boundaries usually represent
arbitrary designations that
systems analysts propose for
establishing a domain of
actions. Setting the scope of the
domain usually involves desig-
nating the level of significance
you wish to assign to relation-
ships. Ecologists contend that
all living processes on Earth
relate to each other, so the scope
of an ecological system could be
extremely broad.

Chapter 12 ■ Testing Simulations and Event Models474

Figure 12.3 A system begins as a collection of tentative
nodes.

12-Sim Game Dev-Ch12 7/16/05 12:50 PM Page 474

System boundaries represent arbitrary designations of a domain. They emerge from an
existential definition of the scope of the system. In other words, you acknowledge from
the start that your definition of the domain is conditional and arbitrary. To establish the
validity of an existential definition, your main obligation to your audience involves
stating your assumptions. In this case, the assumptions involve establishing a context in
which a limited number of nodes using a limited number of interactions create a context
in which levels of cognitive saturation can be quantitatively assessed.

Naming Nodes
When you designate an element as a node, it is important to create a naming system that
does not immediately imply relationships. One approach is to use the number of nodes
and apply a combinatorial algorithm to create an array of random names. In Figure 12.4,
for example, if you consider that the interaction network consists of nine nodes, then you
can take the square root of nine to determine the minimum number of letters required to
generate unique names beginning with the same letter. If you generate a complete matrix
that encompasses all possible names, you have 27 to work with.

Having developed a set of names,
you can then apply the names to
the prospective nodes. Again, for
purposes of objective analysis, you
should randomize the application
of names as much as possible.
Numbers and letters used with
periods or other punctuation
immediately imply an order.
Generally, if you select names
from a table of the type Figure
12.4 illustrates, then you are likely
to be able to name nodes without
at the same time assigning an
implied order to them. Figure 12.5
illustrates the appearance of the
collection of prospective nodes
after names have been applied.

Approaches to Diagrammatic Systems Evaluation 475

Figure 12.4 Name nodes so that you imply no order.

12-Sim Game Dev-Ch12 7/16/05 12:50 PM Page 475

Transitions
Transitions represent
relationships between
nodes. To speak generally
about transitions, you
can call them connectors.
Connectors and transi-
tions are analogous to
elements and nodes. A
connector lacks direc-
tionality. Directionality
designates that the con-
nector occasions the
movement of informa-
tion from one node to
another.

The construction of a
system results from the
application of transitions

to the nodes. In the system Figure 12.6 illustrates, transitions relate nodes to each other.
Each transition represents a flow of information, and to determine whether a transition
exists between two nodes, you ask whether one node receives information from or trans-
mits information to another node. Nodes transmit and receive information according to
the boundary, or scope, of interactions that existentially characterize the system.

You can use a number of symbols to represent connectors and transitions. Curved lines
without arrows designate connectors. Curved lines with arrows designate transitions. See
Figure 12.7.

The Focus of Awareness
A transition indicates that information flows between two nodes, but this is only part of
the picture. When information flows between two nodes, the node toward which the
arrow points indicates the direction of information flow and the movement of the focus
of awareness that accompanies the flow of information. The focus of awareness refers to
the focal point of cognitive awareness—awareness as established by the structure of inter-
action the system sustains.

Chapter 12 ■ Testing Simulations and Event Models476

Figure 12.5 Apply random names to identify prospective nodes.

12-Sim Game Dev-Ch12 7/16/05 12:50 PM Page 476

Consider what happens
if you use a pencil to
examine the transitions
in the diagram. Using the
pencil, you trace the
paths of arrows from
node to node. (See
Figure 12.8.) When you
trace the paths of the
arrows in this way, your
activity creates a focal
point of interaction. The
tip of the pencil at any
given point represents
the focal point of cogni-
tive awareness that you
sustain as you trace the
path of the transitions.

The movement of the pencil provides a way to understand the directionality of the
arrows. You carry information from one node to the next, and the significance of the
information you carry is relative to the position you occupy in the system. As you move
through the system from node to node, the information you gather allows you to make
decisions about the directions you take. With each decision, your awareness grows.

Figure 12.9 illustrates that the transition from node oor to node roo shows that node oor
contributes information to node roo. If you are tracing this path, when you reach roo, you
are aware that you have passed through oor and you are aware of the potentials oor holds
with respect to roo.

Approaches to Diagrammatic Systems Evaluation 477

Figure 12.6 A system consists of transitions and nodes.

Figure 12.7 A transition differs from a connector because a transition indicates directionality.

12-Sim Game Dev-Ch12 7/16/05 12:50 PM Page 477

If you consider that the tran-
sition from one node to the
next represents a growth in
your awareness of the system,
then you also have a way to
understand that the direction
of the arrow represents, not
the solicitation of informa-
tion, but the growth or trans-
formation of understanding.
The nodes are not in them-
selves agents of intelligence.
They represent moments in
which decisions can be made
about how information is to
continue to flow.

A transition implies that an
agent acquires and transforms
information as he or she moves
from one node to another.
From the standpoint of infor-
mation theory, this acquisition
and transformation of infor-
mation is accompanied by an
acknowledgment of some type.
You can view acknowledge-
ment as a focus of awareness
accented by a moment of new
understanding.

Abstracting and Diagramming Acknowledgment
As becomes evident in the discussion a little later in the chapter, you can diagram an
acknowledgement if you picture it as an event context. You can picture an event context
as a combination of several factors. Consider, for example, what happens if you stand on
the peak of a hill. You can turn on your heel and see a varied set of views. A simple turn
on your heal gives a different view, but each view differs according to how you think about
it. If in one direction you see a park, you might begin planning an outing for a picnic. If
you see a river in a second direction, you might think about kayaking. If you see houses
in a third direction, you might start planning a move or a construction project.

Chapter 12 ■ Testing Simulations and Event Models478

Figure 12.8 The context of cognitive awareness moves as you
trace the path of the transitions.

Figure 12.9 Transitions represent increased awareness.

12-Sim Game Dev-Ch12 7/16/05 12:50 PM Page 478

What you see is not simply a result of having turned on your heel. You might see a park
as an opportunity for a picnic, but you might also remember that you were once mugged
in a park. Again, you might remember a time when you played a softball game in a park.
In other respects, you might see a valley you think a wonderful spot for a house, but you
might also be thinking about the opportunities afforded by a raise or a new job. To assess
the significance of your interaction with the settings you see as you turn on your heel atop
the hill, you must consider the significance of memories, what you see, your sense of your
abilities in the future, and among many other things, the general set of chance views your
turns on your heels offer you.

How you account for your thoughts as you turn atop the hill is analogous to what happens
when you analyze a transition. Each factor that you include in your analysis represents an
abstraction of acknowledgement. As Figure 12.10 illustrates, you use the curved arrow to
represent a moment that almost inevitably consists of a complex exchange of information
and complex form of acknowledgement.

Contexts of
Interaction

You can begin to see nodes
as giving shape to a system
when you see the nodes as
contexts of interaction.
Contexts of interaction
emerge from the ways that
nodes relate to each other
to provide information,
foster the growth of aware-
ness, and set occasions for
decisions. (See Figure
12.11.) They do so as a sys-
tem, and the shape the
system assumes depends
on the ways that the contexts of interaction relate to each other. The great benefit you derive
from this view of the system consists of understanding how the parts and the whole relate.
As the elements of the system (the parts) join to create the system (the whole), the system
subordinates the elements to the scope of activity that the system existentially represents.

At first, your view of the whole system might lead you to concentrate specifically on the
connections between specific nodes, so that you resist allowing the elements to merge into
the whole. There is a benefit to be derived from this view. The tension you feel as you view
the whole and in relation to the parts allows you to discern how your awareness of the
system changes depending on the point of focus.

Approaches to Diagrammatic Systems Evaluation 479

Figure 12.10 Transitions imply acknowledgements.

12-Sim Game Dev-Ch12 7/16/05 12:50 PM Page 479

In Figure 12.12, the dou-
ble circles represent
moments of transition. A
moment of transition
constitutes what might
be viewed as a testing or
confirmation of under-
standing. Imagine mov-
ing the pencil tip from
rox to roo. The awareness
you possess as you make
this movement can vary
according to the path
you follow. Your most
recent transition might
have been from rxx to
rox. Or it might have
been from oor to rox.
What you find significant

as you reach roo depends on the path leading to it. With each new movement, the center
of focus for the system changes, and with this change comes a new view of the system, a
new awareness of the reality it creates for someone who participates in it.

As your awareness of the
whole increases, so does
your awareness of the
parts. The awareness
consists of acknowledge-
ments given to contexts
of interaction. Contexts
of interaction represent
nodal clusters of transi-
tions. These clusters are
dynamic and their sig-
nificance takes shape
according to the paths
that create them. Figure
12.13 illustrates the
emergence of nodes as
dynamic contexts of
interaction.

Chapter 12 ■ Testing Simulations and Event Models480

Figure 12.11 The view of the whole begins to subordinate the
elements.

Figure 12.12 Junctions of interaction might draw your attention
as you first examine a system.

12-Sim Game Dev-Ch12 7/16/05 12:50 PM Page 480

Determining Significance
You can determine the significance of each context of interaction if you first isolate it from
other contexts of interaction. In Figure 12.14, for example, node rxx now appears in the
foreground. When positioned in the foreground, node rxx has a distinct form, one that
abstractly represents its potentials for dynamically interacting with other nodes.

One way to picture the situation that now emerges involves considering for a moment the
concept of a hologram. A hologram is a photograph, but it differs from other photographs
because each part of a hologram possesses the information you require to re-create the
image of the whole. Normally, photographs consist of a set of dots colored to provide a
single image. A hologram is different. Imagine, for instance, that you have a holographic
picture of an apple. If you cut the hologram into pieces and then illuminate any one of the
pieces using a laser, you will see that each piece creates a whole image of the apple. The
part re-creates the whole because each part of a hologram possesses the information you
require to re-create the whole.

Figure 12.14 is not a hologram. Still, node rxx possesses the shape it possesses because it
interacts with the other nodes in the system in a specific way. In one sense, the shape of
the whole depends on the shape of the part. On the other hand, the shapes of the parts
depend on the shape of the whole. Transitions converge in node rxx in a specific way.
Transitions converge in all the other nodes in specific ways. From these convergences—
these contexts of interaction—arise the distinctive character of the system as a whole.

Determining Significance 481

Figure 12.13 The significance of nodes emerges from system
interactions.

12-Sim Game Dev-Ch12 7/16/05 12:50 PM Page 481

n o t e

A gateway node is a node
that has only one connec-
tor and that you do not
need to depict as receiving
feedback. Node rro is a
gateway node. Such nodes
provide ways to define
open systems without at
the same time making
evaluations of the system
impossible.

Context Influence
A node can be described as a context of interaction. You can begin to evaluate the
significance of a given context of interaction by considering both how it influences other
contexts of interaction and how other contexts of interaction influence it. This type of
relatedness constitutes the general connectivity of the node (NC). Influence flows in two
directions. Movement from the node consists of an output (NO). Connectivity can also
be viewed as reception of information (NR). The number of connectors that tie a
context of interaction to other contexts of interaction provides a quantitative assessment
of this connectivity. The value you arrive at when you assess connectivity in this way
gives you the context influence (CI) of the node you are examining.

CI = NR x NO x NC,

where NR, NO, or NC = 1 if NR, NO, or NC = 0.

This formula indicates that the product of the number of node receptors (NR), the
number of node outputs (NO), and the number of node connectors (NC) provides the
influence of the context of interaction (CI). Figure 12.15 illustrates an event context and
the factors involved in determining its influence. Table 12.1 provides a summary view
of the values involved and how they can be used to determine the context influence of
a given event context.

Chapter 12 ■ Testing Simulations and Event Models482

Figure 12.14 Isolating a context of interaction allows you to
explore its significance.

12-Sim Game Dev-Ch12 7/16/05 12:50 PM Page 482

In Figure 12.15 and Table
12.1, the formula used to
determine the influence of
the context of interaction
(CI) contains an indexed
value. For example, notice
that CI(rxx)[1] has an index
of 1. The 1 indicates the
order of the analysis. Order is
something akin to the inter-
nal scope or boundary of
analysis. The order is the
degree of analysis that you
conduct to establish a given
value. In this case, as Figure
12.15 shows, you evaluate
the node only to discover its
significance relative to the
nodes with which it is most immediately connected. This is the first order of nodes.

If you wanted to take the analysis to a second order, you could assess the significance of
each of the transitions of each of the nodes with which rxx is connected. This order of
evaluation lies beyond the scope of this discussion.

Context Influence 483

Figure 12.15 The influence of a context of interactions can be
discovered by considering its connectors.

Table 12.1 Terms for Influence and Significance

Term Abbreviation Discussion

Context Influence CI(node)[order] Context Influence for a given node relative to a given order
of evaluation. CI = NR x NO x NC, where NR, NO, or NC = 1
if NR, NO, or NC = 0.

Node Reception NR(node) The number or transitions that show a node receiving
information.

Node Output NO(node) The number of transitions that show a node supplying
information to another node.

Node Connectivity NC(node) The total number of connectors for a given node.
Context Significance SI(node)[order] The product of the contexts of influence that contribute a
Influence given context of interaction. S = CI1 x … x CIn

12-Sim Game Dev-Ch12 7/16/05 12:50 PM Page 483

Systems Significance
Using the information that you gain from the quantitative influence of given contexts of
interaction, you can move on to assess the influence the overall system possesses. The
influence of the overall system consists of the sum of the influences of the nodes that
constitute the system. Figure 12.16 provides a summary view of event contexts and the
influences that characterize them.

Path Transitions
Evaluating the significance of a system involves evaluating both its nodes and its transitions.
Just as the influence of individual contexts of interactions can be summed to obtain a view
of the overall influence of the system, the values of transitions can be combined to evaluate
the significance of different paths. A path consists of the set of transitions a given scenario
includes. Figure 12.17 depicts a scenario. The scenario encompasses a series of sequentially
numbered transitions. The subscripts indicate the order in which the focus of attention
approaches the transitions. For the segments T5 and T9, you see that path uses the same
transitions.

Chapter 12 ■ Testing Simulations and Event Models484

Figure 12.16 Cognitive saturation (SI) for cognition is the sum of the influences of the
constituent event contexts.

12-Sim Game Dev-Ch12 7/16/05 12:50 PM Page 484

Table 12.2 summarizes the terms that apply to the assessment of transitions and paths.
The values for the individual transitions (T) are combined to determine the path value
(PV). The path value represents only the paths of a given scenario. Total path value for the
system (TPV) represents all the transitions that constitute the system.

Table 12.2 shows you that several types of paths can be characterized in special ways. For
example, some paths allow you to move through the transitions a system offers without
redundancy. You can refer to such paths as progressive. The path shown in Figure 12.17
falls into a second category, that of a constrained path. Such a path allows you to repeat
transitions up to twice each, and it generally moves forward in a fairly efficient way from
start to terminal point.

After constrained paths come regenerative paths. Such paths can repeat a given transition
a large number of times. The limiting number is a number that allows you to complete a
path the system provides. (Picture turning right three times to complete the circuit of a
square or seven times to complete the circuit of an octagon.)

A final path is identified as degenerative. This form of path is not necessarily doomed to
failure, but it allows you to repeat single transitions a number of times far in excess of the
number of transitions that characterize the system. The number can even go to infinity.

Path Transitions 485

Figure 12.17 Path values are calculated using context significance.

12-Sim Game Dev-Ch12 7/16/05 12:50 PM Page 485

Calculating the Relative Path Value
Drawing from the information Table 12.2 provides, you can determine the total path value
the system provides. To accomplish this, calculate a value you can use to represent the sum
of all possible paths in the system. This requires that you find a reasonable limitation to the
number of paths you consider. Toward this end, you can sum the minimum and maximum
transition values, divide this sum by two, and then square the result. This results in the total
path value for the system (TPV):

You can also calculate the traversed path value (PV) of a path a scenario designates. Again,
drawing from the information that Table 12.2 provides, to accomplish this, you need only
to add up the values you find for each transition (T) in the path you have taken. Here is
the formula:

Chapter 12 ■ Testing Simulations and Event Models486

Table 12.2 Types of Paths

Term Abbreviation Discussion

Progressive Path The order is CI1 -> C12 -> … ->CIn, and no path
(transition) is repeated more than once (TC <= 1 >)

Constrained Path The order is CI1 -> C12 -> … ->CIn, and no path
(transition) is repeated more than twice (TC <= 2>)

Regenerative Path The order is CI1 -> C12 -> … ->CIn, and no path
(transition) is repeated more than the context count (CC)
for the system (TC < = CC>)

Degenerative Path The order is CI1 -> C12 -> … ->CIn, and one path
(transition) becomes infinite (Tn = Infinity>)

Transition Value (TV) The value is the sum of the two contributing contexts. TV =
CIn + CIn+1.

Path Value (PV) The sum of the path transition values that constitute a
given scenario. PV = Sn{TV1 + TV2 +…+ TVn}.

Total Path Value (TPV) The square of the sum of the smallest transition value
added to the largest transition divided by 2.
TPV = (TVmin + TVmad / 2)2

12-Sim Game Dev-Ch12 7/16/05 12:50 PM Page 486

To find the relative path value (RPV) of the path taken, you need only to find the ratio of
the traversed path value to the total path value:

Figure 12.18 shows the
result of the calcula-
tions for the system
depicted thus far in this
chapter. The relative
path value is 0.4156378.
The large number of decimal places can be reduced to accord with your needs. In more
complex systems such as the one that you deal with a little later on in this chapter, you
require a large number of decimal places because your interaction scenario represents a
small fraction of the total path value.

Calculating the Relative Context Value
The relative context value is the ratio of the nodes included in a given scenario to the
nodes that comprise the entire system. To obtain the relative context value (or signifi-
cance) of the session, you take the number of contexts the traversed path includes and find
the ratio of this value to the number of contexts the system includes:

Path Transitions 487

Figure 12.18 Transitions pertain to specific and general path potentials.

12-Sim Game Dev-Ch12 7/16/05 12:50 PM Page 487

The system Figure 12.13 depicts features 9 event contexts. Since 8 of the event contexts lie
in the path the scenario designates, the ration is 8/9, or 0.888.

Calculating the Cognitive Saturation Value
If you know the relative context value and the relative path value, you can then calculate the
level of cognitive saturation that characterizes a given user session. The cognitive saturation
level is the average of the sum of the relative context value and the relative path value.

Given the figures used so far, when you apply this formula you arrive at a saturation of
approximately 0.651.

A Trial Run of Inspect
To place the discussion provided thus far in a context that allows you to arrive at a more
concrete, tactile grasp of the meaning of cognitive saturation, access the Inspect_Sample
folder in the Chapter12_Code folder. In this folder is another, called Inspect_Sample.
Open this folder and the Inspect.exe file. Figure 12.19 displays the result.

Chapter 12 ■ Testing Simulations and Event Models488

12-Sim Game Dev-Ch12 7/16/05 12:50 PM Page 488

Inspect is a C# applica-
tion. You can find the
source code and a
Microsoft Studio .Net
project for Inspect in the
Inspect folder in the
SimulationSrc directory
for Chapter 12. Due to
limitations of space, this
chapter does not pro-
vide a discussion of how
to implement the code
for the application.
Instead, the focus is on
how to use Inspect in
conjunction with a
game to derive data that
you can use to assess the
cognitive saturation of
the game.

The data that Inspect
displays consists of five
types. Here is a break-
down:

■ Node data. Each node provides a context of interaction. Nodes communicate with
other nodes by passing information to them (NO). They also receive information
(NR). They have a general context weight based on their role as connectors (NC).
Using the formulas shown in Table 12.2, you can assess the interactive context
influence (CI).

■ Path data. Each path possesses significance on the basis of the two nodes it connects
(PV) and overall path to which it contributes (RPV).

■ Summary node data. Each node offers a point at which you can make a decision
regarding what to do next. It is not enough to say that a node offers only an
opportunity to make a decision. Nodes can differ in significance depending on
the number of choices they offer and the significance of the paths to which the
choices lead.

■ Summary path data. The total path value of the system describes what might be
considered the maximum potential that a system offers to extend pathways. Picture
this in terms of the number of kilometers of trails a park might offer. After a time,
you begin hiking the same trails, even if you do so in differing orders.

Path Transitions 489

Figure 12.19 Inspect provides you with a view of data you can use
to assess application performance.

12-Sim Game Dev-Ch12 7/16/05 12:50 PM Page 489

■ Cognitive saturation. The way that nodes and paths merge to shape the interactive
potential of a game can be assessed using cognitive saturation. If you finish a user
session after interacting with only a few nodes and pathways, then the cognitive
saturation of the application is probably fairly low. On the other hand, if you end
up exploring many of the nodes and paths available to you during your session of
interaction, then the cognitive saturation of the application is probably fairly high.

General Trends in Cognitive Saturation
Figure 12.19 represents data drawn from a single session of play involving Gold Finder,
which is a slightly altered version of the game you developed in Chapter 9. This session
results in a cognitive saturation reading of around 0.39. This figure gains significance
when you assess its value relative to data collected from a number of play sessions.
Consider Figure 12.20, which graphically represents a trend you might observe if you
collect data about multiple sessions.

Assume that you acquire a game and over time have different experiences with it. For
example, if at first you abruptly conclude the game after starting to play it, you are likely to
experience little satisfaction, and the level of cognitive saturation that characterizes your
play session is close to zero. Given this start, consider what happens if you again play the
game, this time exploring more options and learning more about its features. You make
more choices and follow more paths. The cognitive saturation moves into the middle area
of the curve. Chances are that you experience greater satisfaction.

If you practice a few more times, you might find that you discover a multitude of features
and paths of interactions. Your level of satisfaction increases, as does the level of cognitive
saturation that characterized your session of interaction.

Running Inspect
Now that you have had a chance to examine how cognitive saturation can be pictured on
an abstract level, you are ready to engage in some practical exercises. These exercises allow
you to accomplish two primary tasks. First, you alter the application you developed in
Chapter 9 so that it can write data to a file. The data you write to a file allows you to track
your interactions with the application. Second, you alter the application so that it auto-
matically opens Inspect to analyze the data you have generated. To begin this activity,
access the SimulationSrc folder in the Chapter12_Code folder, and then look in the
Listing12_01 folder for the project (*.sln) file. Compile the project. Figure 12.21 illustrates
a view of Gold Finder, which you last saw in Chapter 9.

Chapter 12 ■ Testing Simulations and Event Models490

12-Sim Game Dev-Ch12 7/16/05 12:50 PM Page 490

To begin generating data, you can follow
a test scenario. Software testers employ
use case to map test scenarios. Figure
12.22 illustrates a test scenario to follow
as you play Gold Finder. While you can
set up a use case to help you maintain a
complex set of interactions during test-
ing, you can also employ the use case as
a tool to help you assess the data that
you obtain through Inspect.

Path Transitions 491

Figure 12.21 The Gold Finder game from Chapter 9 makes a reappearance for testing.

Figure 12.20 Cognitive saturation gauges
interaction and satisfaction.

12-Sim Game Dev-Ch12 7/16/05 12:50 PM Page 491

If you follow the test scenario Figure 12.22 provides, when you perform step 12, which
involves guiding the character to the golden tombstone, the game displays a message
box. The message box informs you the data from your user session has been collected
and can be displayed. Figure 12.23 illustrates the message box.

You might have to move other windows on your desktop around before you can see it, but
the Inspect window appears as soon as the game ends. The game ends when you collide
with the gold stone, and the message box informs you that Inspect has executed to show
you the data your session has generated. To close the message box, click OK. This leaves
you with the Inspect data window. Figure 12.24 illustrates the Inspect data window that
results if you follow the use case Figure 12.22 illustrates.

Chapter 12 ■ Testing Simulations and Event Models492

Figure 12.22 A test scenario for playing Gold Finder.

12-Sim Game Dev-Ch12 7/16/05 12:50 PM Page 492

The upper data pane displays
data on the nodes or event
contexts that Gold Finder
encompasses. The lower data
pane displays data on the tran-
sitions that characterize your
interactions with the game. At
the very bottom, the Inspect
window displays the data used
to calculate the level of cogni-
tive saturation that applies to
your use of the application.

Path Transitions 493

Figure 12.23 A message box informs you that the
application has generated data and invoked Inspect.

Figure 12.24 Inspect shows you the data that has been logged for
your user session with Gold Finder.

12-Sim Game Dev-Ch12 7/16/05 12:50 PM Page 493

Assessing Messages
As the earlier sections of this chapter have discussed, to a great extent you can assess
interaction in terms of event contexts (nodes) and pathways (transitions). Gold Finder
provides several contexts of interaction. You can identify the contexts of interaction if
you assess the messages the application can process. As is shown in greater detail a little
later on in this chapter, the application class for Gold Finder features eleven messages.
Each of these messages can be the basis of an event context. To fully identify the context,
however, you must assess how one event leads to another. As Figures 12.14 through 12.16
illustrate, the significance of an event context depends on the transitions it maintains
with other nodes and the complexity of the nodes with which it communicates.

As Figure 12.25 shows, UP, RIGHT, LEFT, and GOAL events display the greatest potentials.
INTENSITY and FOG tend to be less complex, as is the game’s end (goal) event. Event con-
texts that tend to character actions frequently performed tend to have greater overall sig-
nificance than other actions. In this respect, it might be said that frequently performed
actions should have greater significance than other actions. Certainly where design of an
application is concerned, you work hard to ensure that the users of your application find
that the actions they frequently perform are logical and laden with cognitive significance.

In addition to event contexts, the interactive potentials of your application depend on the
transitions between event contexts. As Figure 12.26 illustrates, transitions establish paths,
and paths have significance according to the value of the nodes they connect. Paths also
have significance with respect to the extent to which they account for the total number of
possible paths that a system offers.

As Figure 12.26 illustrates, Inspect tracks the actual path you follow as you interact with
Gold Finder. If you examine this data in detail, you can see that it accounts for not only
the movement of the arrow keys but also the settings you apply to the lights.

Chapter 12 ■ Testing Simulations and Event Models494

Figure 12.25 Event contexts reveal trends of significance.

12-Sim Game Dev-Ch12 7/16/05 12:50 PM Page 494

In each case, the records that Insight generates relate transitions as passages between event
contexts. Inspect employs the algorithms discussed earlier in the chapter to arrive at the
values of transitions. Transitions that lead to collisions often show high significance. Turns
tend to have values that fall into the middle range. Adjustments to the lighting tend to
have the lowest significance.

Code Implementation for Testing
To test the Gold Finder game, you add a few lines of code to it to generate test data. The
lines of code you add complement existing code. Your work begins with the message
processing capabilities you created when you developed the game in Chapter 9. After
attending to message generation, you add a few lines of code to invoke Insight. You do
not need to perform any work to create Insight. The executable already resides in the
Bin directory for the code for this chapter.

Identifying Messages
As discussions in previous chapters have emphasized, you create attributes in the
CMyApplication class that enable you to track messages. When you create class attributes to
track messages, you also have a way to log each message your application processes. You

Code Implementation for Testing 495

Figure 12.26 Messages can be used to track paths.

12-Sim Game Dev-Ch12 7/16/05 12:50 PM Page 495

can log messages because upon declaration you associate each attribute with a unique
number. Here is the attribute list for the CMyApplication class, which you find in
CMyApplication.h:

static const int IDC_START = 0;
static const int IDC_END = 1;
static const int IDC_STATIC = 2;
static const int IDC_INTENSITY = 3;
static const int IDC_STATIC2 = 4;
static const int IDC_UP = 5;
static const int IDC_RIGHT = 6;
static const int IDC_DOWN = 7;
static const int IDC_LEFT = 8;
static const int IDC_GOAL = 9;
static const int IDC_COLLIDE = 10;

Logging Messages
Whenever you play Gold Finder, the actions you take are logged to a file. Logging your
actions to a file requires that you perform three tasks. First, you set up a log file. Second,
you create a function that writes numbers to the file that identifies your actions. Last, you
create a function that signals the termination of a game and invokes Inspect so that the
data you have logged can be processed and displayed to you.

Setting Up a Log File

To set up a log file, you make a small addition to the CMyApplication class. This addition
consists of the declaration of FILE attribute. The attribute identifies a file stream—an
identifier that holds a pointer to which you can write data. Here is the code for the
attribute in CMyApplication.h:

// Output file
FILE *m_fpOutput;

n o t e

As a note for C++ buffs, to include file i/o, you can adopt the newer convention of including
C header files using the names they have been assigned under the latest ANSI C++ specification.
In this respect, stdio.h becomes cstdio. Since these header files are now in the std namespace, you
no longer append *.h to identify them.

To use the file handle, you must first associate it with a file. You perform this work in the
CMyApplication::Initialize() function. You use the C language fopen() function to
accomplish this. This function requires two parameters and returns a pointer to a file

Chapter 12 ■ Testing Simulations and Event Models496

12-Sim Game Dev-Ch12 7/16/05 12:50 PM Page 496

stream, which you assign to m_fpOutput. The first parameter of fopen() identifies the file
to which you want to write data. The second identifies the mode in which you want to
use the file. The typical modes are read (“r”), write (“w”), and append (“a”). You can also
use “t” and “b” in conjunction with the basic file mode specification to indicate whether
you want to write in text or binary mode. In this instance, you use “wt”, for “write text”:

// Open the output file
m_fpOutput = fopen("data.txt","wt");

Writing Data to the File

Having designated a stream that you can write to, you can then begin to write data to it. To
accomplish this task, you make use of the C language fprintf() function, which you call in
the scope of the CMyApplication::OnGUIEvent() function. The procedure is fairly simple. Each
time you invoke the OnGUIEvent() function—which is every time you issue a message—you
call fprintf() to write to the file. Here is a snippet of code to illustrate this activity:

void CMyApplication::OnGUIEvent(UINT nEvent, int nControlID,
CDXUTControl *pControl)

{
// Log the message
if(m_fpOutput)
{

fprintf(m_fpOutput, "%d\n", nControlID);
fflush(m_fpOutput);

}

//. . . lines left out
}

The fprintf() function requires two parameters, but it is a function that takes a variable
number of arguments. The first identifies the file stream. The second is a character
string, possibly containing escape sequences describing the types required for succeeding
arguments. In this case, “%d” designates a signed or decimal integer. All parameters after
the second provide the types specified in the second argument in the correct order to fill
in the string.

The data you write consists of the unique identifiers for each of the messages you process
when you play the game. The nControlID parameter of the OnGUIEvent() function provides
these identifiers. Each time you issue a message, you call fprintf() to write data to the file.
After writing the data to the file, you call the C language fflush() function to clear the
stream for the next message.

Code Implementation for Testing 497

12-Sim Game Dev-Ch12 7/16/05 12:50 PM Page 497

If you access Inspect_Sample and open the data.txt file, you can view the result of this
activity. The information you log consists of the integers that uniquely identify the
messages. Figure 12.27 provides a small sampling of the data.

Processing Messages
To process messages, you add a
set of selection statements to the
OnGUIEvent() function. The selec-
tion statements filter messages and
process them accordingly. For most
of the section statements, Chapter
9, “Environments of Simulation,”
discusses the actions you perform to
implement message processing. In
this context, however, you imple-
ment a few statements in special
ways. For example, consider how
you process messages relating to the
end of the game. Here is a snippet of
code from the OnGUIEvent() func-
tion that accomplishes this work:

//. . . Lines left out
else if(GetWorld()->IsCollision(L"Gold", vecNewPos))
{

// Log the message for a collision
if(m_fpOutput)
{

fprintf(m_fpOutput, "%d\n", IDC_GOAL);\
fclose(m_fpOutput);

}
//../../Bin
// Run Inspect.exe
ShellExecute(NULL, L"open", L".\\Inspect.exe",

NULL, NULL, SW_HIDE);
// Open up the inspect application

MessageBox(NULL, L"You found the gold! \
Press OK when finished viewing \
data.", L"Winner!", MB_OK);

pEntity->SetPos(D3DXVECTOR3(0, 0, 0));

Chapter 12 ■ Testing Simulations and Event Models498

Figure 12.27 The program writes message identifiers
sequentially.

12-Sim Game Dev-Ch12 7/16/05 12:50 PM Page 498

CreateStones();
// Re-open the file
if(m_fpOutput)

fclose(m_fpOutput);
m_fpOutput = fopen("data2.txt", "wt");

}
else
{

pEntity->SetPos(vecNewPos);
}

}
m_pGraphics->SetFog(D3DCOLOR_XRGB(0,0,0), m_fFogStart, m_fFogEnd);

}

Unlike other messages, the message that signals the end of the game has a special standing.
It occurs only once, and when it occurs, you face a couple of tasks. First, you must
announce that the game has ended. Next, given that you want to evaluate the play session
using data you have extracted from it, you want to open Inspect so that you can process and
view the data.

To log the final event of the game, you call the fprintf() function one final time to write
the IDC_GOAL message to the file. In most cases, the game logs this message last, but in some
cases, if you do not clear the file, you might see it displayed several times. (The numerical
value of the message is 9.) After writing the GOAL message, you call the C library fclose()
function. The sole parameter for this function is the file stream (m_fpOutput).

Calling Inspect

To open Inspect, you call a special function that the Win API library includes. This is the
ShellExecute() function. This function allows you to open one application from another.
It provides a handy, safe, and simple approach to opening external executables.

The ShellExecute() function requires six parameters. Table 12.3 provides a breakdown of
the parameters. Here is the prototype for the function:

HINSTANCE ShellExecute(HWND hwnd,
LPCTSTR lpOperation,
LPCTSTR lpFile,
LPCTSTR lpParameters,
LPCTSTR lpDirectory,
INT nShowCmd

);

Code Implementation for Testing 499

12-Sim Game Dev-Ch12 7/16/05 12:50 PM Page 499

Inspect is a C# application that you can compile and modify as you wish. Describing how
to work with C# and Inspect on a programming level lies beyond the scope of this book.
However, it might be beneficial to point out that you can find the project for Inspect in
the SimulationSrc/Inspect folder. The project file is named Inspect.sln. If you execute the
project file, you can find the algorithms for the calculations in NodeList.cs. Although the
code is in C#, you can readily work with it if you know C or C++.

The Message Box

After using the ShellExectute() function to call Inspect, you call the MessageBox() function
to display a message box. The message box serves as a transition from one application to
another. If you intend to engage in frequent testing, you can comment out the message box
code. Inspect grabs the data it requires when it opens, so you do not have to worry about
loss of data.

Following your call to the MessageBox() function, your last task involves cleaning up. To clean
up, you call the C library fclose() function. This function requires only one parameter,
which identifies the file stream you have opened (m_fpOutput). This closes the file but does
not destroy the data in it. Following the call to the fclose() function, you include a call to
the fopen() function. This call to fopen() serves to clean up after one session of play and
prepare for the next. At this point, the data file is blank.

Chapter 12 ■ Testing Simulations and Event Models500

Table 12.3 ShellExecute Parameters

Parameter Discussion

hwnd Designates the parent window. In this case, Inspect has no parent window, so you
assign NULL.

lpOperation You assign any of a number of string values to this parameter. Among these are
open, find, print, and explore. Each of these strings indicates a task. In this
instance, you open Inspect.

lpFile Designates the file or executable you want to open. In this case, the file is the
executable for Gold Finder.

lpParameters Designates any values you want to pass to the executable.
lpDirectory Designates the path to the executable.
nShowCmd You can control how the application you open first displays. Among the options

are SW_HIDE, SW_MAXIMIZE, SW_MINIMIZE, and SW_RESTORE. The initial value
is set to SW_MAXIMIZE. You might want to change this to SW_HIDE.

12-Sim Game Dev-Ch12 7/16/05 12:51 PM Page 500

Conclusion
In this chapter, you have examined a few of the topics that might be associated with
testing simulations. This chapter has emphasized a model for simulation that includes
event nodes and transitions. Each event node consists of a collection of decisions that
establish relationships with other nodes, so you can consider any given node to be an
event context. Using a little basic math and some systems diagrams, you can formulate
approaches to assigning numerical values to nodes. Given this approach to modeling, it
becomes evident that different nodes possess different levels of significance within the
context of the system.

Just as nodes possess significance relative to their relationships with other nodes, the rela-
tionships between nodes gain significance relative to the values of the nodes they connect.
You can refer to the relationships between nodes as transitions. While a transition from
one node to another constitutes a simple path, paths within the logical system of a game
usually consist of a number of sequentially connected transitions.

The collection of all the nodes in a system constitutes the total node significance of a
system. If you compare the number of nodes you navigate through during a given
scenario of play to the total number of nodes the system provides, you can determine
the relative context value of your session of play. On the other hand, if you consider the
paths you navigate during a session of play and compare the value of these paths with
the value that represents all the paths the system provides, then you can determine the
relative path value of a session of play.

Taken together, relative context value and relative path value allow you to determine the
cognitive saturation of a session of play. Measuring the level of cognitive saturation
provides you with a way to evaluate how much of the functionality of an application you
use during a session of play. No strict standards apply to levels of cognitive saturation, but
one general observation to begin with involves considering that if during repeated sessions
of play you use only a low percentage of the functionality the system provides, then it might
be worthwhile to alter the way you have laid out your game or simulation. You might want
to add a few features that induce the user of the game or simulation to more comprehen-
sively explore the features of the game.

This chapter includes a discussion of Inspect, an application that processes data generated
from Gold Finder, the sample game developed in Chapter 9. Using Inspect to process data
based on the messages generated during a session of play, you can see how levels of cogni-
tive saturation change from session to session. Given a number of sessions of interaction,
you can begin to assess whether an application adequately engages its users.

Conclusion 501

12-Sim Game Dev-Ch12 7/16/05 12:51 PM Page 501

The following books address some of the topics discussed in this chapter:

Virginia Anderson and Lauren Johnson. Systems Thinking Basics: From Concepts to
Causal Loops (Waltham, Massachusetts: Pegasus Communications, Inc., 1997).

Mat Buckland. AI Techniques for Game Programming. (Indianapolis, IN: Premier
Press, 2002).

Alistair Cockburn. Agile Software Development (Boston: Addison-Wesley, 2002).

Jamshid Gharajedaghi. Systems Thinking: Managing Chaos and Complexity
(Boston: Butterworth Heinemann, 1999).

Neal Hallford with Jana Hallford. Swords and Circuitry: A Designer’s Guide to
Computer Role-Playing Games (Indianapolis, IN: Premier Press, 2001).

Suguru Ishizaki. Improvisational Design: Continuous, Responsive Digital
Communication. (Cambridge, Massachusetts: MIT Press, 2003).

Sun-Joo Shin. The Iconic Logic of Peirce’s Graphs (Cambridge, Massachusetts: MIT
Press, 2002).

Chapter 12 ■ Testing Simulations and Event Models502

12-Sim Game Dev-Ch12 7/16/05 12:51 PM Page 502

