PART ONE

THE EASI1CS

1 Introduction to Network Programming

2 Winsock/Berkeley Sockets Programming
3 Introduction to Multithreading

4 The Basic Library

5 The Socket Library

6 Telnet Protocol and a Simple Chat Server

S N

T ‘ MUD ch 01(F).PM6.5 o 2 - ' - 11/10/03, 10:42 AM ‘ f

CHAPTER |

INTRODUCTION
TO NETUWORK
FPROGRANMING

) NN T 1] k2 [T [11 ||

49 1. Introduction to Network Programming

nless you’ve been living under a rock for the past 20 years, you've probably heard
U about something called the Internet. To most people, that word is associated with
ominous things like e-mail, the World Wide Web (WWW), and naughty pictures. To you, the
game programmer, the Internet is so much more—a universe of its own where you can
create games to play with people who live across town as well as those who live thousands of
miles away.

The Internet is a grand thing for game programmers. It adds community interaction to
games and allows players to match wits and reflexes with anyone, instead of being required
to play against typically dumb and repetitive artificial intelligences. To learn how to effi-
ciently program MUDs, however, you must first have a solid understanding of network
programming. This chapter supplies that foundation. If you already have a good grasp of
network programming, you may safely skip this chapter.

In this chapter, you will learn to:

® Relate the history of communication networks to game programming
@ ® Understand the philosophy and layered hierarchy of Internet Protocols (IPs) @
® Understand the basics of common transport protocols

® Find additional information on networking protocols

Why Learn the Basics?

I have found that it is always a good idea to know the mechanics of anything I intend to work
on. I disagree with computer professors and gurus who rant for hours about the beauty of
abstracting the interface of a mechanism from its mechanics (how it works, in essence) to
justify the concept that you shouldn’t need to know how something works to use it.

Indeed, few people who drive actually know
the physics of acceleration and energy usage NOTE
or even how an internal combustion engine . ..
works. At first, this can seem like a good Throughputiisa c.:ommunlcatlons
thing; anyone can jump into a car without term that describes how much data
knowing how the engine works. You press can go through the network per unit
the gas, and the car goes; you press the of time. For example, the throughput
brake, and the car stops. of a 56 kilobits modem is roughly
around 56 kbps (kilobits per second),
and the upstream throughput of my
cable modem is around 128 kbps.

It’s not always that simple however. I can’t
count the number of times I've been at a
stoplight and watched the car next to me

‘ MUD ch 01(F).PM6.5 4 11/10/03, 10:42 AM ‘

) T T 1] k2

History of Communication Networks in a Nutshell

5

[T (11 ||

T ‘ MUD ch 01(F).PM6.5

accelerate as fast as possible only to stop in a few hundred feet at the next stoplight. When-
ever that happens, I know the person has no idea of how energy and acceleration work.

The person who accelerates to 50 MPH and then immediately brakes to a halt wastes far
more energy than the person who accelerates to 30 MPH, coasts, and then brakes to a halt.
The first car wasted energy accelerating 20 MPH faster, only to have that energy drained
away as heat energy in the brakes.

So you can see that knowing how something works may not be necessary for operating a
mechanism but is useful for operating it efficiently. And as you may know, game program-
ming is all about using things efficiently and taking them to the limit.

History of Communication
Networks in a Nutshell

From the beginning of history, communica-
tion has been an important part of human NOTE
society. As important as communication has . ..
been, the mass distribution of communica- Latency is .a communlcat.lons term
tion through networks is only a recent that describes how long it takes for
development. Most early communication one piece of data to reach its desti-
was accomplished through horseback riders nation. For example, it takes less
carrying written messages. than one millisecond (msec) for data

The invention of railroads brought a major LI ICT G T I AIE N

advancement in communications networks on my homeinetworl, andiaround I3
by facilitating the transfer of massive msec for data to reach my Internet
amounts of mail across the world. But Service Provider’s (ISP’s) routers.
communication was still inadequate. While
the throughput of these railroad networks was
large, the latency was also large.

While masses of mail could be sent through railroad networks, it still took weeks for some
pieces to reach their destinations, and this was unacceptable to many people.

Electric Communication—
Telegraphs to Telephones
In 1835, something amazing happened: The telegraph was invented.

The telegraph was essentially a long wire with a speaker on one end and a battery at the
other. Figure 1.1 shows a simple telegraph “network.” Whenever the battery was engaged, it
sent an electrical signal down the wire that would power the speaker and cause a small tone
to be heard. Since there were only two states of the communication—the presence or
absence of sound—a special messaging system called Morse code was invented, which varied

5 $ 11/10/03, 10:42 AM

1. Introduction to NetworkPrngramming

s

_IJ—I_W_'EFU—”_I_‘—'_'_Ll——'

the number and length of tones to represent
different characters. Short tones were called
dots, and long tones were dashes.

Even though communication in this
manner had a low latency (tones were
transmitted almost instantly), you can
imagine that the throughput of this method
of communication was very low. There were
no machines back then to convert signals
from Morse code to English, so people had
to do it by hand.

The next major innovation in communica-
tions occurred in 1876 with the invention of
the telephone.

-4——Messages——

NOTE

T L

It is a commonly held “fact” that
Samuel Morse invented the tele-
graph, but there are conflicting
reports about a person named C.M.
Renfrew inventing it as well.You can
read about this more on the Internet
if you wish; there’s good information
about telegraphs at this site: http://
www.worldwideschool.org/library/
books/tech/engineering/
HeroesoftheTelegraph/chap|.html.

speaker

The telephone allowed people to encode
sound data into an analog electrical pulse,
which would then be sent down a wire, to
the speaker on the other end (Figure 1.2).
This method of communication was an
incredible innovation, since with the direct
interpretation of voice, communication
could be accomplished without people
encoding and decoding Morse code. This
greatly improved the throughput of the
communications, because voice data could
now be transmitted in real time.

-4 Voice

battery

speaker

Figure 1.1
This simple telegraph

network transmits

electrical signals from one

end to the other.

NOTE

Alexander Graham Bell is generally
credited with inventing the tele-
phone, but he was only lucky enough
to get his patent approved first.

Elisha Gray, working independently
of Bell, simultaneously invented the
telephone, but he didn’t file his
patent application fast enough.What
have we learned today, class? Always
file your patents immediately.

microphone

T ‘ MUD ch 01(F).PM6.5 6

*

Figure 1.2

In this simple telephone
network, voice data is
turned into electricity by
the microphone, and
turned into sound on the
other end by a speaker.

11/10/03, 10:42 AM

) T T 1] k2 [T (11 ||

History of Communication Networks in a Nutshell 7

This method of communication only
increased people’s desire for faster and NOTE
better communications, since only one

person could use one telephone line .
at 2 time phone supported two-way communi-

cations, which Figures |.l and 1.2 do
not show, for simplicity’s sake.

Both the telegraph and the tele-

Switched
Communication

Peer-to-peer networking connected many telephones to many other telephones. Alexander
Graham Bell was a major proponent of this kind of network, and it worked well for small
networks. Basically, every node in a peer-to-peer network is physically connected to every
other node in the network through wires. This gets to be a major problem as the number of
nodes grows, because, as you can probably see, the number of wires needed in this kind of
network follows a geometric progression based on the number of nodes in the network. To
add a third node to a network, you need two extra wires, making a total of three in the
network. Table 1.1 shows a listing of the number of wires needed for networks with different
numbers of nodes.

Table |.I Wires Needed for Peer-to-Peer Networks

Nodes Wires
2 I
3 3
4 6
5 10
10 45
15 105
500 1,225

The number of wires needed in a peer-to-peer network follows this formula: (n * (n-1))/2.
So you can see that any network that gets past a certain size is in the realm of being com-
pletely unmanageable.

Because of this, the concept of a centralized communications network was invented, and its
implementation was called a circuit-switched network. This kind of network contains any
number of nodes and one central switching station, arranged as shown in Figure 1.3.

‘ MUD ch 01(F).PM6.5 7 11/10/03, 10:42 AM ‘

) NN T 1] k2 [T [11 ||

8 1. Introduction to Network Programming

Figure 1.3

n01d9 n02de This simple switched
communications network
connects four nodes to a
switching station.

switching
station
node node
3 4

Since only one conversation could be conducted at any given time on a telephone wire, the
original networks had to use switching to enable multiple conversations to occur at the
same time. Essentially, this is how it worked.

@ There was a human operator at the switching station, who monitored all the nodes for @
incoming activity. Whenever one of the nodes wanted to talk to any of the other nodes,
a person called the operator from his node, and the operator asked whom he wanted to talk
to. When the operator determined whom the caller wanted to talk to, he physically con-
nected a wire from the caller’s circuit to the destination circuit. For example, Figure 1.4
shows node 1 connected to node 4. When node 1 wants to talk to node 4, an operator
physically connects the circuits with a wire.

Figure 1.4

Four circuits at the circuit
switching station from
Figure 1.3.

L,,/ g

‘ MUD ch 01(F).PM6.5 8 11/10/03, 10:42 AM ‘

) T T 1] k2

History of _Commi,initatinn Networks in a Nutshell

9

[T (11 ||

T ‘ MUD ch 01(F).PM6.5

So, with this network, a total of two conversations can be held at the same time, and any
single node can talk to any other node, as long as the line is open. This spawned a major
breakthrough in communications, but its service was still inadequate. Eventually these
switching stations became too large for human operators to manage, so methods were
developed to spread out the communications into many switches, as shown in Figure 1.5.

Figure 1.5
In this configuration, two
: : : switches are connected

with many wires, allowing
Switch 1

Switch 2 nodes from each local
\@ \@ switch to connect to nodes
? ? ? ? on another switch.
When a person wanted to call someone at

his local switch, the same procedure was NOTE
followed. When a person wanted to call
someone on another switch, the operator
connected the person to the operator on
the desired switch, and that operator

Many Wires

5

The terms intra and inter refer to
‘“internal” and “external’ respec-
tively. So inter-switch refers to

connected the person to the right destina- connections between two nodes on
tion. Each switch had only a certain number one switch, but intra-switch refers to
of wires connecting it to other switches, and connections of nodes that are on
that limited the number of connections that different switches.

could be made from switch to switch. For

example, a switch may have 16 nodes, which
allows up to eight intra-switch connections at once, but it may have only four wires connect-
ing to an adjacent switch, which means that only four inter-switch connections can be made.

Eventually, each switch in the United States was numbered with its own area code, and this
led to our current area code system.

It didn’t take long for these networks to become such huge messes of wires that it was
difficult to make connections. Therefore, an even more centralized system was created. The
switches were given centralized switches, sometimes called hubs. Figure 1.6 shows one of
these networks.

9 $ 11/10/03, 10:42 AM

) NN T 1]

10

L

*

[T [11 ||

1. Introduction to Network Programming

_IJ—I_U_'_'EFU—”_I_‘—'_'__I——'

Switch 1

Switch 3

EIAN

Hub

Gk
ofe

¢

== = s

Figure 1.6

In this large switched
network, the central switch

Switch 2

/® controls connections

among the intermediate

Switch 4

é\@

Packet-Switched Networks

Traditional circuit switching was great, but it had too many limitations for our growing
communications needs. Since traditional circuit-switched networks were so centralized, the
main hubs could go down, and half of the communications in the country would instantly
be halted. Only one line could be in use at any given time, limiting the number of concur-
rent connections drastically. There also came a time when it took about seven to eight
minutes just to go through all the operators to connect to someone else on the network.

In the 1960s, the United States Advanced Research Projects Agency (ARPA) invented the first
packet-switched network. The idea of such a network is to separate data into tiny chunks,
called packets.

In this type of network, instead of only one connection per wire, special machines at the
end of each wire accept discrete chunks of data (packets) and send each chunk one at a
time down the wire, with the chucks arriving first sent first. These machines are called
switches, but they are much more commonly known as routers. Figure 1.7 shows a simple

network with two routers.

T ‘ MUD ch 01(F).PM6.5

*

11/10/03, 10:42 AM

] @ [T (11 ||

 History nf"_'C6h1mLiniéatiun Networks in a Nutshell 1

e e

Figure 1.7
node node .
In a simple packet-

switched network, the

- Packets > routers send packets of
Router Router data down the single wire
that connects them.

Whenever a node has data to send, it puts that data into a discrete-sized packet and then
sends it to the router. The router decides where it goes and sends it to the right place. If the
wire between the routers is busy, the router puts the packet in a queue and keeps it there
until the wire opens up and is available for transmissions.

This kind of network is a great improvement, because it drastically reduces the number of
wires needed to connect two switches. One of the downsides, however, is that since many
more communications are now occurring on the same line at the same time, each connec-
@ tion has less bandwidth. The original Defense Advanced Research Projects Agency Network @
(DARPANEet) didn’t have enough bandwidth to transmit a single voice communication,
unless it was the only communication going on at the time.

Since data packets had to be in a form that the routers could understand, and the routers
were digital computers, it made sense that they would send digital data. Unfortunately, data
sent over a wire is analog by nature, so the digital data needed to be turned into an analog
signal using a device called a modulator-demodulator (modem for short). Early modems didn’t do
a great job of converting data efficiently, and were limited to a bandwidth of about 300 baud.

NOTE

Bandwidth is a networking term that generally describes
how much data can be sent through a network. In the
traditional sense, bandwidth refers to the size of a signal.
For example, telephones have 3,000 Hz of bandwidth, from
400 Hz to 3.4 KHz.Telephone wires are not rated to send

data above or below those thresholds. AM Radio broad-
casts use about 10 KHz of bandwidth each, FM Radio
broadcasts use about 200 KHz, and VHF/UHF TV broad-
casts use 6 MHz of bandwidth. Most people, when dealing
with packet-switched networks, refer to their throughput
as bandwidth as well.

‘ MUD ch 01(F).PM6.5 11 11/10/03, 10:42 AM ‘

NOTE

Baud is an old term, dating back to the days of telegraphs.
The term comes from the name of one of the engineers
who first worked with telegraphs, Jean Maurice Emile
Baudot.The speed at which an electronic circuit changed
states was measured in bauds, and a baud was roughly
equivalent to the number of bits per second that could be
transmitted. So 300 baud is about 300 bits per second.
Modems stopped using the term baud at around the time
the 14,400 bps modem was invented. Does this sound like
ancient history?

Over the years, significant improvements have been made to methods of data transmission
over traditional copper wires. New inventions such as fiber-optic wires and even wireless
radio-frequency (RI) communication allow data to be transferred in a much more efficient
manner. Eventually, everything will be transferred over packet-switched networks, since they

@ are far more cost-efficient and useful than the circuit-switched or broadcast networks that
your telephone and cable companies use. You won’t need a specific cable line, phone line,
or Internet line; everything will connect into one standard interface.

NOTE

Eventually, all land-based copper wires will be replaced with
fiber optics. Fiber-optic communication is an incredible
breakthrough in the realm of wired communications. Every
electrical circuit has resistance, which slowly saps out the
signal strength and causes the wires to become hot.There-
fore, to maintain signal strength on copper wires, repeaters

must be placed on the wire to boost the signal and send it
further. Not only do these boosters require lots of energy,
but they slow down transmission speed as well. Fiber-optic
wires directly transmit light impulses with much less signal
drop-off, and since they transmit light directly, they are
faster than traditional electrical signals as well. In addition,
fiber-optic wires require fewer repeaters.

‘ MUD ch 01(F).PM6.5 12 11/10/03, 10:42 AM

) T T 1] k2 [T (11 ||

History of Communication Networks in a Nutshell 13

Communications

Broadband communications originally referred to cables that carried more than
one type of data at the same time.The first types of broadband included Digital
Subscriber Line (DSL) and cable modem technologies. However, the term now
generally applies to any Internet communications that are faster than traditional
modems, which are limited to 56 kilobits per second.

DSL lines are essentially an extension of the standard telephone lines to your
house.While telephone wires are not officially supposed to handle data above
3.4 KHz bandwidth, most new telephone wires actually can handle that kind of
data. Therefore, digital data can be encoded into an analog electrical signal
above 4 KHz and transmitted to the phone company without disrupting the
normal phone conversation.The most popular DSL variant is ADSL (the “A”
stands for asynchronous, because it allocates more bandwidth for downloading
than uploading), which uses the band of 25 KHz to 160 KHz for its upstream,
@ and 240 KHz to 1,500 KHz for its downstream. @

Unfortunately for me, DSL technology came too late.The year before DSL was
standardized, my telephone company installed a digital switch in my neighbor-
hood that encoded the telephone data into a digital stream of data and sent it
to the phone company via a fiber-optic cable, ignoring any data outside of the
standard telephone range of 400 Hz to 3.4 KHz.Therefore, DSL cannot be used
in my neighborhood because the phone technology is too advanced for DSL.
Talk about irony!

Cable modems work in a similar way to DSL, except they use the unused bands
of the coaxial cable that goes into your house, instead of your telephone line.
Cable modems typically use the band of 5 MHz to 65 MHz for upstream data
and 850 MHz to 1000 MHz for downstream data. Cable modems use much
more bandwidth for their signals, because coaxial cables are typically a lot
longer than telephone cables, and signals on them are weaker.

‘ MUD ch 01(F).PM6.5 13 11/10/03, 10:42 AM ‘

) NN T 1]

19

_IJ—I_U_'_'EFU—”_I_‘—'_'__I——'

*

Introduction to Network Programming

the Internet Wonderiland

The Internet is a very cool thing, but I’'m sure you already knew that. I want to show you
how packets actually work, so you can appreciate even more how wonderful the Internet
is.The basis of the Internet lies in the Internet Protocol (IP). This protocol was invented in
1981, which really wasn’t that long ago in the grand scheme of things.

== = s

Mechanics of Packets and

The whole idea of the IP protocol was to define a standard method of communication among
routers, switches, and nodes on a network. Basically, every chunk of data that is sent is prefixed
with a header, also known as the IP header. Two versions of IP exist today: IPv4 and IPv6.

All About IPv4

Figure 1.8 shows the standard layout of an IPv4 header.

8 bit:

1
16 bit

32 bit;

Version Header Length |

Service Type

Total Packet Length

Figure 1.8
This is a standard IPv4
header.

Identification

Flags

Fragment Offset

$ Time To Live

Protocol

Header Checksum

Source IP Address

Destination IP Address

Options (variable sized)

Padding (to make header a multiple of 32 bits)

The v4 means version 4. IPv4 is the current IP standard across the world, but there is a newer
version called /Pv6. (What happened to IPv5? Who knows? It’s probably having a party
along with DirectX 4.) I’ll get into IPv6 later on, since it’s not used too much—yet.

You don’t have to understand all the little details of the header; they’re really important
only to network engineers. I'll go over the important points, though.

The first thing you should know is that the length of the header is variable. Everything up to
the Options parameter (bottom row of the figure) is set in stone, but the Options param-
eter is variable. That is why there is a parameter that holds the length of the header (the
Header Length parameter); any data past the header is the data stored in the packet.

The Total Packet Length parameter describes the entire length of the packet, in bytes,
including the header. Since it’s 16 bits long, an IP packet can be at most 65,535 bytes long.

The Time To Live (TTL) parameter is particularly interesting; it determines how long, in
jumps, the packet lives. This prevents packets from accidentally being routed around in
circles forever. Every time a packet passes through a new router, the TTL field is reduced by
1, and when it reaches 0, the router completely discards the packet. The field is 8 bits, so
there can be at most 255 hops between routers before a packet is completely discarded. The
255 hops is an incredibly large number, so it is reasonable protection.

T ‘ MUD ch 01(F).PM6.5

*

11/10/03, 10:42 AM

|

) T T 1]

*

[T (11 ||

History of _Cdmmi;.initatinn Networks in a Nutshell

The Protocol parameter determines which protocol is being used on top of the IP header.

T ‘ MUD ch 01(F).PM6.5

Only a few kinds of protocols operate on top of IP. As a games programmer, you should

mainly pay attention to two:

® Transmission Control Protocol (TCP)
® User Datagram Protocol (UDP)

I describe these protocols in more detail later on. The Header Checksum parameter is an

important data integrity measure in IPv4. A checksum is a value that represents the data and is

computed by a checksum algorithm. The checksum is a simple measure that verifies if data

has been changed in the transmission. Whenever a router receives an IP packet, the packet’s

checksum is calculated and compared to the existing checksum value in the packet. If the

numbers match, you can be reasonably certain that the data has not changed; if the numbers

don’t match, you know the data was somehow changed by an error or interference in the

communication path. Whenever the checksums don’t match, the router immediately discards

the packet. You’ll see why this is a good idea later on. Also, since the TTL parameter is

changed at every router, the checksum is recalculated whenever a router passes a packet on.

Finally, the two most interesting parts of an
IP packet are the source IP address and the
destination IP address. Every node on an
IPv4 network is given a 32-bit IP address,
typically represented as four numbers,
separated by periods, like this:
192.168.100.5.

The original Internet addressing scheme
classified all addresses into three groups:
large, medium, and small networks. This
system was wasteful and isn’t used much
anymore, so I won’t waste time describing it.

Using 32-bit addresses limits the number of
total nodes on a network to a little more
than 4 billion, which used to seem like a

NOTE

Under the old addressing system,
organizations such as the University
of California At Berkeley were given
more IP addresses than the entire

country of China.You can see how
the old system just isn’t going to
work anymore, especially when you
consider that Berkeley only has a
few thousand people, and China has
1.2 billion.

large number, but it seems smaller and smaller every day. There are already many more
than 4 billion people on this planet, so giving every person his own IP address is not even

possible anymore. This was the major concern for upgrading the system to IPv6, which I will

touch on next.

IPvBG: Bigger and Better

IPv6 was created in 1995, when the Internet community realized that IPv4 was too con-

strained. The biggest problem, by far, was the small address space allocated to IPv4. As I've

said before, 4 billion addresses is simply not enough to identify all the computers on the

planet now or in the future. Most large ISPs dynamically assign an IP address to a customer

when he logs on and reuse that number for another customer once he logs off. This
method isn’t useful anymore, as most people are starting to realize the importance of

) *

11/10/03, 10:42 AM

15

._|_|—|_.—l'”_”'|5|—l—|_p—'—|_'_

) NN T 1]

16

*

1. Introduction to Network Prdgrammihgr‘

permanent Internet addresses. How would you like a phone number that changed every
day? In addition, as broadband connections are becoming the standard, more and more
people are staying online longer and longer, making dynamic IP allocation less workable.

And finally, there are going to be thousands of devices in the future that will need their own
IP addresses. IBM has even promised refrigerators that can connect to the Internet, and
gosh darn it, I want them now!

Besides the larger address space, IPv6 has a host of new features making it more stream-
lined and functional, and even better security features have been added. However, if you’re
interested in those features, you should get a networking book, because this stuff isn’t that
important to game programming.

Figure 1.9 shows a diagram of an IPv6 header.

—8 bits—]

Figure 1.9

Notice that there are
| fewer fields in this

IPv6 header than in an

IPv4 header.

| 16 bits :
| 32 bits |
Version |Traffic Classl Flow Label
Payload Length | Next Header [Time To Live

Source Address (128 bits)

Destination Address (128 bits)

IPv6 has been simplified, and the rarely used
portions of the IPv4 header have been
removed. The other big change is the huge
addresses; IPv6 addresses are 128 bits long.
That means that there are a total of 3.4x10%
addresses available. That’s 340 undecillion
addresses, and when you haven’t even heard
of a number before, that means you’ve got
enough addresses. But to further illustrate
my point, I’'m going to show you some more
pointless calculations that illustrate the
sheer size of the IPv6 address space.

At any rate, there should be enough ad-
dresses for at least the next few hundred

T ‘ MUD ch 01(F).PM6.5

NOTE

The surface area of the earth, water
included, is 5.1x10'* meters squared.
If you divide 3.4x10%¢ by 5.1x10'4, you
get 6.6x102%. That means that there
are around 660 sextillion IPv6

addresses available for every square
meter of space on the planet.That
ought to be enough for anybody—
until we decide to give IP addresses
to every molecule on the planet.
Or until we provide free Internet to
the multiverse.

11/10/03, 10:42 AM

[T [T |

) T T 1] k2 [T (11 ||

IP Philosophy and Layered Hierarchy 17

years, so we’ll let programmers find more addresses when the time comes. For now, there
are places on the Internet where you can obtain a block of a few million—or even billion—
IPv6 addresses.

The rest of the fields of an IPv6 header are pretty much the same as the important fields in
IPv4, with updated names. They’re not really important.

IP Philosophy and
Layered Hierarchy

IP packets are not guaranteed. When you send an IP packet, you have absolutely no idea if
it will be received. Even worse, you can’t tell if a packet has reached its destination.

Doesn’t that sound like an incredibly stupid way to design a network? Maybe so, but think
about it for a moment. Imagine how much more complex the routing hardware would have
to be to ensure that every IP packet arrived intact at its proper destination. Right now, the
routers don’t care; they take the data and keep relaying it on until it either gets to its
destination, or they discard the packet as junk. Simple hardware is cheaper to build, and
faster as well.

@ So, what is the point of unreliable communications? With digital data, even one byte @
missing out of a file can make the entire thing useless, so unreliable communications seems
like the opposite of what you’d really want!

Instead of letting hardware control integrity and validation, the IP model puts software in
charge. Before going into this topic, I want to explain the layered hierarchy of Internet
communications.

Internet protocols are actually designed into four distinct layers:

Network layer
Internet layer

n
n
® Transport layer
n

Application layer

Each time you send a packet of data over the Internet, it is encapsulated by a new header at
each layer. For example, if you are sending Hyper Text Transfer Protocol (HTTP) data, which is
basically web-page data, the data you send is first enclosed into an HTTP header at the
Application layer. Then, the HTTP application sends the packet to the operating system,
which adds a Transport layer packet header as well as an IP packet header for the Internet
layer. (HTTP uses TCP as the Transport Layer Protocol. And I will get to TCP in a bit.)
Finally, depending on what device you use for Internet access, a Network layer packet
header is added to the packet, and finally it is sent on its way. Figure 1.10 is a pictorial
representation of the layered hierarchy of Internet packets. This particular example demon-
strates browsing the WWW with an Ethernet connection.

‘ MUD ch 01(F).PM6.5 17 11/10/03, 10:42 AM ‘

) NN T 1]

*

18 1. Introduction to Network Programming

_IJ—I_U_'_'EFU—”_I_‘—'_'__I——'

Application layer

== = s

HTTP Header

Packe

tata__ | Figure 1.10

A

/

A

' In this standard four-layer

tbaa | packet structure, each

packet of data is prefixed

with the header of the

various protocols it uses.

Transport layer | TCP Header HTTP Header Packe
Y Y Y
Internet layer | IP Header | TCP Header HTTP Header Packet Data |
A A Y Y
Network layer | Ethernet Header | IP Header | TCP Header HTTP Header Packet Data |

Previously, I told you all about the IP protocol. This protocol makes its home in the second layer,
the Internet layer. I started there first, because it is really the most important layer when dealing
with Internet communications. Now I will go into more depth on the layers themselves.

Network Layer

The lowest layer is called both the Network layer and the Physical layer, because it is the layer
that is added to a packet whenever a physical device sends the data. Examples of this
include an Ethernet card (Ethernet Protocol), a modem (PPP Protocol), a wireless Internet

@ card (802.11b protocol), or a cable modem (DOCSIS protocol). Each of these devices
operates in a different way and has its own header format depending on its needs.

The great thing about the layered protocol system is that the physical devices don’t care what
kind of data you are sending over them, so you can send any kind of data, as long as the
recipient of the data expects it and knows how to decode it.

Internet Layer

The Internet layeris perhaps the most important layer, since every device in a single network
must understand and recognize it. The primary purpose of the Internet layer is to provide
routing and addressing services, so the routers know where to send packets. A network can
use many different kinds of devices, such as modems and Ethernet cards, and as long as
they all understand the Internet layer protocol in use, the network should operate perfectly.

Of the three major Internet layer protocols, I have described the two most commonly used:
IPv4 and IPv6. In the past, a third protocol, called IPX or Internetwork Packet Exchange, was
widely used as well. IPX is superior to IP in a few ways, but it never really caught on and is
pretty much dead today. One of IPX’s notable characteristics was that it had a segmented
address space. It had 32-bit network addresses, and each network also had a 48-bit node
address, essentially using 80-bit addresses.

Transport Layer

I haven’t talked much about this layer yet, but it is important. The Transport layer accommo-
dates protocols such as TCP, UDP (explained in a section that follows) and Internet Control

T ‘ MUD ch 01(F).PM6.5 18

*

11/10/03, 10:42 AM

|

) T T 1] k2 [T (11 ||

IP Philosophy and Layered Hierarchy 19

Message Protocol (ICMP). These protocols are primarily designed to handle connections,
rate of data transmission, and data integrity verification.

For example, as I mentioned before, if you use the IP protocol, you have absolutely no idea
if the packet you sent reached its destination. To solve this problem, you need to have the
Transport layer protocol handle the transmission.

For example, when you wrap your data into a TCP (Transmission Control Protocol) packet,
TCP calculates the checksum of all of the data, and then your operating system wraps the
entire TCP packet into an IP header and sends that out.

When the recipient of your packet gets the data you sent, it sends an acknowledgement (ACK)
packet over TCP, saying that it got the packet. It may, however, fail to receive your message
for a variety of reasons. If the original TCP packet gets lost, for example, the ACK packet
would never have been sent, or the ACK packet itself may have gotten lost. If the sender
doesn’t receive the ACK packet, the sender sends the data again, and keeps sending the
data until he receives a confirmation that the data has been sent. Here’s a simple listing

of the process:

1. Send packet.
2. Wait for ACK.
3. If no ACK in given amount of time, go back to 1.
@ 4. Send next packet. @

The hardware costs for this method of data verification are far lower than making the IP
protocol itself check the integrity of data and respond to the sender that there was an error.
The routing hardware doesn’t really care much about acknowledgements; instead, it just
assumes the communications succeeded, and it lets the end computers figure out if some-
thing went wrong. The reason this works is because the number of times data transmission
fails is far fewer than the number of times that the transmission is successful, so there’s
really no point in making every node along the transmission path check that it is successful,
and send errors backward along the path.

There is a slight chance of data transmission error, and that slows things down a little bit,
because the sender keeps trying to send the data; but, in the end, that is a far more desir-
able solution than having incredibly expensive routing hardware.

The User Datagram Protocol (UDP) elects to forego the data integrity issues and opts instead for
speed over integrity; in other words, delivery is not guaranteed. For this reason, UDP is quite
often preferred over TCP for very fast games, such as first person shooters. I won’t cover UDP
in detail in this book because it is not an important protocol for low-speed MUDs. I'll be
sticking with TCP, which is a little slower but more robust and has guaranteed delivery.

Application Layer

The Application layeris theoretically the highest layer of a packet header, and it contains
information about the specific application you are using with the packet. Examples of
popular Application layer protocols include HTTP, File Transfer Protocol (FTP), Telnet,

‘ MUD ch 01(F).PM6.5 19 11/10/03, 10:42 AM ‘

) NN T 1] k2

20 1. Introduction to Network Programming

Simple Mail Transfer Protocol (SMTP), and so on. The topics in this book focus almost
entirely on creating and using application layer protocols for MUDs.

Other Layers

The four-layer model is really just a recommendation for networking; it’s not a necessity. In
the past, some crazy people have demonstrated this fact using completely useless technolo-
gies. For example, there is an IP over SMTP protocol, which defines how to send IP packets
over SMTP. Of course, SMTP is built on top of TCP, which in turn is built on top of IP, so
what is the point? Who knows? Never underestimate what a nerd and some free time can
accomplish. After all, as game programmers, who are we to judge?

It is usually accepted to use the slash notation (/) to show protocol layering. For example,
you may have heard of TCP/IP. This means that you are using TCP over the IP protocol. It
is literally pronounced “T'CP over IP.” Slash notation, however, is not common for other
combinations, because the entire idea of networked communications is to keep the layers as
independent as possible. That way, you can easily use higher protocols over different lower
protocols. This is why you don’t see people saying “HTTP over TCP over IP.” Not only is it a
mouthful to say, but you aren’t really required to send HTTP over TCP anyway (though I've
really never seen anyone who doesn’t).

Common Transport Protocols

As a game programmer, you usually won’t pay attention to the IP protocol; the operating
system should take care of that for you automatically. You’ll only be slightly more interested
in the TCP and UDP protocols, since most compilers have built-in libraries to handle these
protocols. I'll start with UDP first, since it’s simpler.

upDP

UDP, as I've said before, is the User Datagram Protocol. A datagram is basically just a single
packet of data. The UDP protocol is simple and doesn’t offer the reliability of more com-
plex protocols, such as TCP. Essentially, you just send the packet out and hope it gets there.
This is a “fire and forget” protocol. Figure 1.11 shows the UDP header format.

|—8 bits—| Figure 1.11
|

16 bits I The header format for a
I 32 bits I UDP packet.
Source Port Destination Port
Length Checksum

‘ MUD ch 01(F).PM6.5 20 11/10/03, 10:42 AM

[T [11 ||

J_:I:I @ [T (11 ||

SEme=E = Common Transport Protocols 21

The port fields for UDP (and as you’ll see shortly, TCP as
well) are 16 bits long. This means that a total of 65,536 ports
are available for use. Ports below 1,024 are reserved for
specific application-level protocols assigned by the Internet
Assigned Numbers Authority (IANA).To see a list of these
ports, you can visit their Web site at http://www.iana.org.

IANA covers things such as HTTP (80), FTP (21),Telnet
(23), SMTP (25), as well as hundreds of other protocols that
no one has ever heard of.You should generally try to keep
your programs’ port numbers above 1,024. If you are not
running as root, UNIX-based systems won’t even allow you
to open ports below 1,024 (for servers).Table 1.2 shows a
listing of common port numbers.

The first thing you should notice in Figure 1.11 is that the header is only 64 bits long, or 8
@ bytes. That’s pretty small for a packet header, at least compared to other protocols. @

Next, notice the two port fields. You see, once a packet gets to its destination, there really is
no way for the receiving machine to figure out what program the packet is trying to get to.
Therefore, the idea of ports was invented. When a port receives a packet, the operating
system is supposed to read the port number off the packet and send the packet to the
appropriate program. This way, you can have many different programs on the same ma-
chine, all using the network connection at the same time.

In Figure 1.11, you should also notice the length and the checksum fields. The length tells
you the length of the packet data, including the header. The checksum field contains the
checksum of the data in the packet, so that the receiving machine can figure out if the data is
intact. If it isn’t, the receiver just discards the packet altogether and acts as if it never got it.

UDP is a connectionless protocol. This means that UDP programs don’t connect to each
other; they just send the packet, and the server is supposed to accept it. Other protocols,
especially TCP, will not accept incoming packets unless you explicitly connect to the other
end first.

The fact that UDP does not guarantee delivery of packets can lead to problems. In a fast-
paced game in which the server constantly sends the clients updates on the positions of
other players, guaranteed delivery is not a great problem. If, for example, a position update
packet is sent but never delivered, a reliable protocol like TCP will keep trying to send the
packet; but by the time the protocol finally sends the original packet, the player’s position
may have changed. So in this case, UDP is a useful protocol.

‘ MUD ch 01(F).PM6.5 21 11/10/03, 10:42 AM ‘

But what happens with important data? What if something happens in a game, and the
game is set up so that it won’t retransmit that data later on? You could end up with your
clients completely missing an important game event such as a gunshot and then getting out

1. Introduction to Network Programming

Table 1.2

Port

17
20
21
22
23
25
37
53
80
110
13
119
143
6666
31415

k2 [T [11 ||

Common Ports

Service

QOTD
FTP Data
FTP Control
SSH
Telnet
SMTP
Time
DNS
HTTP
POP3
Ident
NNTP
IMAP
IRC

PIE

Purpose

Quote of the day; sends a quote in text form

FTP data port

FTP control port

Secure Shell Terminal (a secure version of Telnet)

Allows terminal control

Simple Mail Transfer Protocol

Sends the server time

DNS lookups

World Wide Web pages

Post Office Protocol; more mail stuff
Identifies the name of a computer
Newsgroups

Another old mail protocol

Internet Relay Chat

Pieserver; it serves digits of pi*

* See my website at http://ronpenton.net/projects for more information on Pieserver.

of sync. In this case, UDP isn’t a very useful choice.

For MUDs and MMOGs, using UDP usually isn’t a good idea, since most things that happen
in these kinds of games are event based—that is, events occur once and the client absolutely

needs to know they happened.

T ‘ MUD ch 01(F).PM6.5

22

@ 11/10/03, 10:42 AM

) T T 1]

TCP to the Rescue!

T ‘ MUD ch 01(F).PM6.5

*

[T (11 ||

tommun Transport Protocols 23

._|_|—|_.—l'”_”'|5|—l—|_p—'—|_'_

TCP is probably the most highly used transport protocol, since it guarantees data delivery. If
you tell your TCP library to send data, it will get there, barring any unusual events such as a
nonexistent destination. Without TCP, file transfers and reliable communication over the

Internet would be virtually impossible.

In contrast to UDP, TCP is a connection-oriented protocol. This means that the client must tell
the server that he wants to connect, before the server will even listen to incoming data.

TCP is also a streaming protocol. This means
that the protocol attempts to send streams
of data, separated into packets for delivery
over a packet-switched network. This is an
important part of TCP, since it ensures not
only that the data actually reaches its
destination, but also that the data arrives

there in the same order in which it was sent.

I’'ve told you about TCP and the
acknowledgement packet that it uses. Since
this is important, here’s a quick recap.
Whenever a TCP port receives data, it sends
an acknowledgement packet saying that the
data was received. If the original sender
never gets an acknowledgement, then the

NOTE

Because of the decentralized nature

of the Internet, two packets you
send from one place to another may
follow two completely different

paths, which means that you can’t be
sure that sending one packet first
will mean it will arrive first.This

makes TCP a great way to make
sure that the connections receive @
their data in order.

TCP port attempts to send the data again. Of course, this process is inefficient if the sender
sends one packet and then waits for the acknowledgement before sending anything else.

That isn’t how TCP actually works, though. TCP starts off sending all the packets it needs to
in order, and just continues sending until there is nothing left to send. If TCP realizes that
an acknowledgement packet hasn’t come back for a packet it sent, it stops what it is doing

and attempts to retransmit the packet that wasn’t acknowledged.

On the receiving end, if the receiver detects that it is getting a packet out of order, it buffers
the data in that packet until the packet or packets that are supposed to precede it arrive.

At the application level, all of these operations are transparent. Your TCP library handles all
of this for you and makes sure you get the data in its intended order.

Unfortunately, all of these safeguards come with a price, as you see when you examine the
TCP header shown in Figure 1.12. Note that the TCP packet header is much larger than a

UDP header.

TCP is a feature-rich protocol. It includes not only the kitchen sink but the disposal too.
The minimum size of a TCP header is 20 bytes, much larger than the 8 byte UDP header.

TCP uses the same port numbering scheme as UDP, 16-bit ports, which adds up to 65,536
ports. Like UDP, TCP has a checksum field, which is used for data integrity.

i *

11/10/03, 10:42 AM

*

24 1. Introduction to Network Programming

_IJ—I_U_'_'EFU—”_I_‘—'_'__I——'

!—8 bits—]

16 bits :

32 bits

Source Port | Destination Port

Sequence Number

Acknowledgement Number

HSize Reservedl Control Window
Checksum Urgent
Variable Options Padding

== = s

Figure 1.12
The standard for TCP
packets.

The other fields you should at least note are the sequence, acknowledgement, window, and
urgent fields. The sequence field denotes the position of the packet in the current stream at
its transmission point; this is used so that the receiving end can piece together the packets if
they arrive out of order. The acknowledgement field tells the receiver the acknowledgement
number that the sender is expecting.

The window field is somewhat interesting. TCP implements flow-control mechanisms, which
means that each side of a TCP connection can tell the other side how much data it is willing
@ to accept. This is useful for preventing a connection from accidentally sending more

information than the other side can handle.

Notifying the other side on acceptance limits is also particularly useful whenever there are
dropped packets. Since TCP buffers data that is out of order, it may be useful for the receiver
to tell the sender to stop sending data until it catches up. Buffered data can take up lots of
room, since the TCP library can’t do anything with that data until it gets all previous packets.

Finally, you should be aware that TCP supports a concept called urgent data, which the
urgent field handles. Urgent data should not be used inside the data stream, but contains
important connection and control information. The TCP library you are using should
seamlessly strip this data out of the stream and take care of it automatically.

That sums up all the important things you as a programmer need to know about TCP. If
you're interested in learning more about either UDP or TCP, networking books can do the
trick. I just wanted you to know the basic mechanics of how these technologies work as they

affect game programming.

Information on

Networking Protocols

There is one important part of networking that I have neglected to mention: the standard
documentation for all published networking protocols. Early on in the development of

T ‘ MUD ch 01(F).PM6.5 24

*

11/10/03, 10:42 AM

|

NOTE

P’ll let you in on an inside joke.There are many funny RFCs
in the general RFC database. It is kind of an Internet
tradition to submit one of these every April Fools’ Day. For
example, RFC 1149 is officially entitled ‘“A Standard for
the Transmission of IP Datagrams on Avian Carriers,”’
which basically documents a method of transmitting IP
packets using carrier pigeons. RFC 2324 is entitled “Hyper
Text Coffee Pot Control Protocol (HTCPCP/1.0)” and
defines a method of controlling coffee pots over HTTP.
More recent is RFC 2795,“The Infinite Monkey Protocol
Suite (IMPS).” | don’t even want to know what that’s
about.We programmers have a strange sense of humor.

ARPANet, engineers recognized the need for a formal way to publish the standards and
specifications of protocols. They eventually called the documents they created RICs, which

@ stands for Request For Comments. @

You can easily look up RFCs by using their published identification numbers. For example,
the current RFC describing IPv4 is RFC 791. You can search for that with any Internet
search engine, and you’ll get hundreds of links. RFCs are public documentation, and
they’re free to be published anywhere.

Once RFCs are submitted to the world, they can never be changed. If a protocol needs to be
changed, the old RFC is deprecated, which means that it is no longer current, and a new RFC
with updated information is published.

My favorite place for getting RFC information is at a website entitled Connected: An Internet

Encyclopedia, which is located at http://www.freesoft.org/CIE/. If that site is down, you can
probably find a mirror, as it is very popular. The site is fairly well updated with all the RFCs,
and it’s even got useful courses and background material for most of the networking topics
I haven’t covered here.

Summary

I hope you found this chapter interesting. I have a passion for history, and I feel that
knowing your history is a good way of understanding why things are the way they are, what
has succeeded and failed in the past, and where we can go in the future. Packet networking
is a new development in the grand scheme of things, and we’re still pioneering the field, so
I think it is appropriate to know this material.

‘ MUD ch 01(F).PM6.5 25 11/10/03, 10:42 AM ‘

) NN T 1] k2 [T [11 ||

2b 1. Introduction to Network Programming

As I've said at the start of the chapter, you don’t have to be an expert in something to use it, but
it helps a lot if you at least know some of the mechanics. I hope you now understand the basics
of how the IP, TCP, and UDP protocols work, and how networks work in general. This knowl-
edge should pave the way to the next chapter, “Winsock/Berkely Sockets Programming.”

‘ MUD ch 01(F).PM6.5 26 11/10/03, 10:42 AM ‘

