
Getting
Graphical

Chapter 5
Beginning Graphics .107

Chapter 6
Page Flipping and Pixel Plotting .133

Chapter 7
Basic Image Programming .

Chapter 8
Animation .

Chapter 9
Collision Detection .

PART II

05-GPFT-Ch5 4/10/05 3:59 AM Page 105

05-GPFT-Ch5 4/10/05 3:59 AM Page 106

107

Beginning Graphics

chapter 5

Hey, welcome back! Today, we're gonna start using graphics in our program. This
chapter will be a huge jump for you; it teaches you how to initialize the graphical
window and how to perform image loads. It also shows you how to display and move
your images on the screen.

Anyway, get ready. This chapter is simple, but it's packed with some serious stuff.

Creating the Graphics Window
A graphics window is a little bit different from the text windows we have been using thus
far. Unlike the programs we have been running to this point, which could only display
text, graphical windows can also display graphics, such as images and pictures. They can
also change colors of text.

Every BlitzPlus graphical program contains a line of code that initializes the window. This
process basically sets up the window for later use. To set up a graphical window, call the
function Graphics. Graphics is declared as follows:

Graphics width, height, color depth, [mode]

Table 5.1 details each parameter.

05-GPFT-Ch5 4/10/05 3:59 AM Page 107

Width and Height
Let's discuss each parameter in depth. Take a look at width and height—they affect your
program in a huge way, but only a few modes are commonly used. These modes are shown
in the following list. You might be wondering why we only use these modes, and there cer-
tainly is a reason.

■ 640�480

■ 800�600

■ 1024�768

■ 1280�1024

■ 1600�1200

If you were to take a ruler to your computer monitor and measure the height and width,
you would always come out with a bigger width than height. But the cool part is, the num-
bers you come up with are always proportional to one another. For example, my monitor
is 14.66 inches wide and 11 inches tall. If you divide 14.66 by 11, you get 1.33. This means
that my computer monitor's width is 1.33 times its height. This proportion works for all
monitors and most televisions as well. Try it out!

Because the monitor's width is longer than its height, all of the pixel values on the moni-
tor must change. If you were to draw a box that was an exact square, it would end up look-
ing like a rectangle on the monitor (its width would be longer than its height). To combat

Chapter 5 ■ Beginning Graphics108

Table 5.1 Graphics Parameters

Parameter Meaning

width The width of the window in pixels
height The height of the window in pixels
color depth The colors per pixel (in bits)
[mode] The mode of the window: 0 = auto, 1 = full-screen mode, 2 = windowed mode,

3 = scaled-window mode

What Is Initialization?

I use the term initialization a lot in this chapter, and you might wonder what it means. To initialize
a window is to set the window up, so, when you initialize the graphics in BlitzPlus, you are setting
it up. After initialization, you will be able to use graphics in the program.

05-GPFT-Ch5 4/10/05 3:59 AM Page 108

this problem, resolutions make the height pixels larger than the width pixels. The pixels
are stretched out a bit, and the square actually looks like a square. Refer to Figure 5.1 to
see the monitor's proportion.

Color Depth

n o t e

Take note that setting the color
depth only makes a difference in
full-screen mode. In windowed
mode, the color depth of your game
is limited to the color depth of the
player's desktop; in full-screen
mode, the color depth can be set to
any one of the color depths from
Table 5.2. To see your desktop's
color depth, right-click on your
desktop and select Properties. Then
find the Settings tab. Your color
depth is under Color Quality.

The next variable is color depth. The color depth is actually the number of colors that each
pixel can be, and is numbered in bits. See Table 5.2 for the common color depths and their
respective color counts.

n o t e

To determine how many colors each color
depth provides, simply raise 2 to the power
of the color depth. For example, if you want
to find out how many colors a color depth of
8 gives, multiply 2 by itself 8 times (2 � 2 �
2 � 2 � 2 � 2 � 2 � 2) or find 2 to the
8th power (2^8).

n o t e

Although these are the only color depths used commonly today, other depths have been used in the
past. For example, some very old games might have run in a color depth mode of 1, which provides
only two colors—black and white.

Creating the Graphics Window 109

Figure 5.1 The monitor's proportion.

Table 5.2 Color Depth

Color Depth (Bits) Colors

8 256
16 65536
24 16,777,216
32 4,294,967,296

05-GPFT-Ch5 4/10/05 3:59 AM Page 109

c a u t i o n

Make sure you know which bit depth you should be using before you select it. If you use a color
depth of 8, for example, but the colors in your game need at least a color depth of 16, the colors
in your game won't show up.

If you aren't quite sure which color depth to select, BlitzPlus can automatically select the
best color depth for you. To have Blitz do this, just omit the color depth or set it to 0.
Basically, what this means is, if you know what color depth you need, pick it yourself; if
not, let BlitzPlus pick for you.

[Mode]
The final variable in the Graphics
function is the [mode] variable.
[Mode] can be one of four choic-
es—0, 1, 2, or 3. The [mode] vari-
able determines how the pro-
gram window behaves.

0 is [mode]'s default value; if you
leave [mode] blank, it is automat-
ically set to 0. When your pro-
gram runs in auto mode, it runs
windowed in debug mode and
full screen otherwise. Figure 5.2
shows the difference in full-
screen and windowed modes.

Chapter 5 ■ Beginning Graphics110

Figure 5.2 Full-screen and windowed modes.

05-GPFT-Ch5 4/10/05 3:59 AM Page 110

Table 5.3 details each of [mode]'s possible values. Selecting 1 for the [mode] variable caus-
es your game to run full screen. A game in full-screen mode takes up the entire screen;
there are no other windows or programs on the screen. Of course, the other programs are

Creating the Graphics Window 111

What Is Debug Mode?

I refer to debug mode a lot, and you might want to know what it means. When writing a game,
you often come across hidden bugs that are extremely hard to find. Debugging allows you to step
through a program line-by-line to discover where your program goes wrong. Debugging offers
another reason for using functions—discovering bugs in a program where most of the code is
located in functions separate from the main code is much easier than finding bugs in a program
where all the code is thrown together in the main function.

When you are planning on debugging a game, you work in debug mode. This allows you to see the
line you are debugging and find out what value each variable contains. When you have finished
your game, you turn debug off and distribute the actual game. To turn debug mode on and off,
check or uncheck Program>Debug Enabled. See Figure 5.3 to see how to enable Debug Mode.

Figure 5.3 Debug mode.

05-GPFT-Ch5 4/10/05 3:59 AM Page 111

running, they are just hidden under the game. Full-screen mode tends to make the game
run faster, but it takes over most of the player's computer screen. Figure 5.4 is a screen-
shot of a full-screen game.

Chapter 5 ■ Beginning Graphics112

Table 5.3 [mode]'s Values

Value Mode Name Meaning

0 auto Runs in windowed mode when in debug mode and full screen
when not.

1 full screen Game takes up the full screen—no other programs can be seen.
2 windowed Game runs as a regular windows program.
3 scaled windowed Game runs as a regular windows program but also allows

resizing, minimizing, and so on.

Figure 5.4 KONG in full-screen mode.

05-GPFT-Ch5 4/10/05 3:59 AM Page 112

Setting [mode] to 2 forces your game to run like a normal windows program. This means
that your program has a toolbar and can be moved around just like a normal program, as
in Figure 5.5. However, you cannot resize your window.

If [mode] is set to 3, your program acts just like it would if it were set to 2, but you are able
to resize, minimize, and maximize the window to your liking. However, this advantage
comes at a price—a drastic decrease in speed often occurs as a result of scaled window
mode. See Figure 5.6 for an example of what a scaled window could look like.

Creating the Graphics Window 113

Figure 5.5 KONG in windowed mode.

05-GPFT-Ch5 4/10/05 3:59 AM Page 113

Images
Whew, that was one big graphics call! Let's get into more specialized graphics stuff. This
section explains how to load an image, how to draw it onscreen, and the like. Are you ready?

LoadImage
The first call we will be using is LoadImage. This function loads the image of your choice
into your program's memory. You must load an image before you can display it or manip-
ulate it in your program. LoadImage is defined as this:

LoadImage(filename$)

Table 5.4 examines each parameter. To load an image, just substitute the file name of the
image for filename$ (make sure the file name is in quotes), and assign it to a variable,
like this:

Global playerimage = LoadImage("playerimage.bmp")

Chapter 5 ■ Beginning Graphics114

Figure 5.6 KONG in scaled windowed mode.

05-GPFT-Ch5 4/10/05 3:59 AM Page 114

n o t e

Check out what I set the file name variable to. Making the file name just the name of the file (with-
out adding any path info) works only if the image is in the same directory as the game. If not, you
might need to include your drive information. It might look something like this:

Playerimage = LoadImage("c:\windows\desktop\playerimage.bmp")

Even so, I suggest you keep all of your images in the same folder as the game because if you ever
decide to distribute your game, the game won't work on other computers unless the user puts the
images in the exact same folder as yours.

I usually name my image variables in such a way that I can easily see that they are images.
This means I begin my image names with its actual job (player in playerimage.bmp) and
suffix it with image.

The name that you assign to the loaded image is called a handle. Basically, a handle is just
an identifier that refers to an image in memory, like in Figure 5.7.

LoadImage(), by default, searches
directly in the same folder as the
location of the BlitzBasic file. If
you want to load an image from
another directory, you must pro-
vide the full path to the image.

Okay, now that we've got this
LoadImage stuff down, its time to
actually draw it!

Images 115

Table 5.4 LoadImage's Parameter

Parameter Description

filename$ The path of the image

Why .bmp?

Unfortunately, the demo version of BlitzPlus only allows you to use bitmap files for image pro-
cessing. This means that you can't just open some image off your computer and use it, unless it
has a .bmp extension. However, there is a simple way around this problem. Just take the jpeg, gif,
or png file, and open it in Microsoft Paint or in Paint Shop Pro (which is included on the CD). Then
choose Save As and convert the image to a bitmap!

Figure 5.7 A handle to an image in memory.

05-GPFT-Ch5 4/10/05 3:59 AM Page 115

DrawImage
It is pretty easy to guess what this function does: it draws images! Table 5.5 examines each
parameter. Let's start with the declaration.

DrawImage handle,x,y,[frame]

DrawImage has a couple of parameters, so let's move on to a discussion of the handle variables.

Handle

This is a pretty easy-to-understand parameter. Remember when you loaded an image
like this?

playerimage = LoadImage("player.bmp")

Well, the handle is playerimage. So, when you're sending parameters to DrawImage, use the
same image handle that you loaded earlier as the DrawImage handle parameter.

X and Y

The x and y parameters work just like most x and y coordinates in BlitzPlus. Using
DrawImage, your selected image is drawn at the x and y coordinates, as shown in Figure 5.8.
Its top-left corner is located at the given x and y values. However, there is a way to center
the image so that the image's center is located at x,y.

Very often, you will want to center the
image. This is most useful when rotating
images because rotating images around
the top-left corner looks bad (not to men-
tion trippy) due to the fact that you
would expect images to rotate around
their centers. Check out demo05-01.bb to
see how an image looks when it is rotated
around the top-left corner.

Chapter 5 ■ Beginning Graphics116

Table 5.5 DrawImage's Parameters

Name Description

handle The variable that holds the image
x The drawn image's x coordinate
y The drawn image's y coordinate
[frame] Advanced, leave as 0

Figure 5.8 The image at x,y.

05-GPFT-Ch5 4/10/05 3:59 AM Page 116

Although actual rotation is a more advanced technique and is explained in a later chap-
ter, I am using it to illustrate the use of placing the x and y values in the center of the
image. The actual function is called AutoMidHandle and is declared like this:

AutoMidHandle true|false

n o t e

What does "|" mean? | means or. When I say AutoMidHandle true|false, I mean AutoMidHandle
can use either true or false.

To use this function and place the x and y values in the center of the image, call
AutoMidHandle with the parameter true, like this:

AutoMidHandle true

Easy, huh? And to set the x and y location back to the top left, just call AutoMidHandle, like
this:

AutoMidHandle false

It is a good idea to use AutoMidHandle because it helps you understand exactly where the
images are located. Because your access point is directly in the center of the image, you
won’t need to worry about the image’s width and height as much as if the access point was
in the top left.

Table 5.6 details the parameters, and Figure 5.9 shows how demo05-02.bb, which uses
AutoMidHandle true, works. Look at the difference in Figures 5.8 and 5.9. In Figure 5.8, you
can see how the x and y coordinates are located at the top-left corner of the image. In
Figure 5.9, the x and y coordinates are in the center of the image. Try running demo05-
02.bb and watch how it rotates from the center instead of from the left corner, as in
demo05-01.bb.

Images 117

Table 5.6 AutoMidHandle's Parameters

Name Description

true Places the x and y coordinates in the center of the image.
false Places the coordinates at the top left of the image.

05-GPFT-Ch5 4/10/05 3:59 AM Page 117

Make absolutely sure that you
place AutoMidHandle True before you
load the image, otherwise the func-
tion won't work.

By the way, there is another func-
tion called MidHandle that is a lot
like AutoMidHandle, except that it
doesn't set the x and y coordinates
to the center of all of the images. It
only sets the x and y coordinates to
the center of an image you choose.
It is declared like this:

MidHandle image

The image handle you pass it will be reset to the center of the image. Use this if you only
want one image handle to be in the center of the image, rather than all of them.

[Frame]

Okay, this command is very advanced. [Frame] allows you to draw images that are ani-
mated. It is too advanced right now, but we will be going over using animated images very
soon!

CreateImage
This function is pretty cool. It allows you to create an image that looks like whatever you
want, and use it just like a loaded image. For example, say you wanted to create an image
with 100 dots on it. First, call the CreateImage function, which has a declaration like this:

CreateImage(width, height, [frames])

Width and height explain how big the image is; [frame] is used with animated images and
should be set to 0 for now. To create the image, call CreateImage like this:

dotfieldimage = CreateImage(100,100,0)

Okay, you now have the handle to the image. Now, you have to populate the field with
dots. The following is the full source for the program, which can also be found on the CD
as demo05-03.bb:

Chapter 5 ■ Beginning Graphics118

Figure 5.9 The image at x,y with AutoMidHandle
set to true.

05-GPFT-Ch5 4/10/05 3:59 AM Page 118

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; demo05-03.bb;;;;;;;;;;;;;;;;;;;;;
; By Maneesh Sethi;;;;;;;;;;;;;;;;;
; Creates an image and displays it!
; No input parameters required;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;INITIALIZATION

;Set up the graphics
Graphics 800,600

;Seed the Random Generator
SeedRnd MilliSecs()

;CONSTANTS
;The length of each block
Const LENGTH = 100

;The height of each block
Const HEIGHT = 100

;The amount of dots in each block
Const DOTS = 100
;END CONSTANTS

;IMAGES
;Create the dotfield image
dotfieldimage = CreateImage(LENGTH,HEIGHT)
;END IMAGES

;For each dot, draw a random dot at a random location
For loop = 0 To DOTS ;For every star
;draw only on created image
SetBuffer ImageBuffer(dotfieldimage)

;Plot the dot
Plot Rnd(LENGTH), Rnd(HEIGHT)

Next

Images 119

05-GPFT-Ch5 4/10/05 3:59 AM Page 119

;Set buffer back to normal
SetBuffer BackBuffer()
;END INITIALIZATION

;MAIN LOOP

;Tile the image until the user quits (presses ESC)

Cls
TileImage dotfieldimage
Flip

WaitKey

;END MAIN LOOP

Figure 5.10 shows the dot field.

Chapter 5 ■ Beginning Graphics120

Figure 5.10 The dot field.

05-GPFT-Ch5 4/10/05 3:59 AM Page 120

There are a few new functions introduced in this program, and I'll go over them now. The
first new function is ImageBuffer().

ImageBuffer() acts a lot like BackBuffer(). You will learn how BackBuffer() allows you to
draw on the back buffer instead of the front buffer, so that you can flip the buffers and
create animation. Well, ImageBuffer() is just like BackBuffer(), but instead of drawing on a
buffer, you are drawing on an image. ImageBuffer() is declared as this:

ImageBuffer(handle, [frame])

where handle is the handle of the selected image and [frame] is the chosen frame to draw
on (leave as 0 for now). Drawing on an image buffer is a lot like Figure 5.11. As you can see,
calling SetBuffer ImageBuffer(dotfieldimage) allows you to extract the image from the pro-
gram and only draw on that. Then, when you finish, you call the SetBuffer function again.
In this program, I used SetBuffer FrontBuffer(), only because there is no page flipping; how-
ever, in most games use SetBuffer BackBuffer(). Table 5.7 details ImageBuffer's parameters.

Images 121

Figure 5.11 SetBuffer ImageBuffer().

Table 5.7 ImageBuffer's Parameters

Name Description

handle The handle of the selected image
[frame] The chosen frame to draw on; leave as 0 for now

05-GPFT-Ch5 4/10/05 3:59 AM Page 121

The next function introduced is TileImage(). TileImage() is declared like this:

TileImage handle, [x], [y], [frame]

TileImage works like this: it takes an image you give it and it places copies of it all across
the programming board. Think of it like a chess board—there are only two images on a
chessboard, black and white. But these two images are tiled over and over until the entire
board is filled with black and white tiles. See Figure 5.12 for a visual aid to tiling, and Table
5.8 for a list of each parameter.

To tile an image, call TileImage with the handle of an image you wish to tile. BlitzPlus will
take care of the rest. By the way, in later chapters, you will learn how to move the tiled field
up and down to simulate movement.

The last part of the program calls the function WaitKey. This function simply pauses the
program until a key is pressed.

MaskImage
All right, the next function I want to go over is called MaskImage(). MaskImage() is defined
like this.

Chapter 5 ■ Beginning Graphics122

Figure 5.12 The TileImage function.

Table 5.8 TileImage's Parameters

Name Description

handle The image you wish to tile
[x] The starting x coordinate of the tiled image; 0 by default
[y] The starting y coordinate of the tiled image; 0 by default
[frame] The chosen frame to tile; 0 by default

05-GPFT-Ch5 4/10/05 3:59 AM Page 122

MaskImage handle, red, green, blue

MaskImage() allows you to define a color of your image as transparent. What does that
mean? Let me show you.

When you draw or create an image, you always have a
border that is not part of the image. See Figure 5.13
for a description of the border. As you can see, the
outer part of the image is not used, and should be dis-
carded. You don't want the border to be shown, like in
Figure 5.14, do you?

n o t e

Because black is automatically masked by default, the image in Figure 5.14 does not have a purely
black border. I added a tiny amount of blue to the image so that the background wouldn't be
masked. The RGB value of this image's background is 0,0,10.

Images 123

Figure 5.13 An unmasked image.

Figure 5.14 A drawn image with a border.

05-GPFT-Ch5 4/10/05 3:59 AM Page 123

Calling MaskImage() can get rid of that border for you. Table 5.9 explains each parameter.
Because the RGB value of this background is 0,0,10, call the MaskImage() function with the
correct parameters.

The full program is detailed next:

;;;;;;;;;;;;;;;;;;;;;;
;demo05-05.bb
;By Maneesh Sethi
;Demonstrates the use of masking
;No Input Parameters required
;;;;;;;;;;;;;;;;;;;;;;
;Initialize graphics
Graphics 640,480

;Load Background
lilliesimage = LoadImage("lillies.bmp")
;Draw background
DrawImage lilliesimage,0,0

;Load the frog
frogimage = LoadImage("frog.bmp")
;Center the frog
MidHandle frogimage
;Mask the Frog Image
MaskImage frogimage,0,0,10
;Draw it in the center
DrawImage frogimage,320,240

Flip
;Wait for user to press a button
WaitKey

Chapter 5 ■ Beginning Graphics124

Table 5.9 MaskImage Parameters

Name Description

handle The image you wish to mask
red The red value of the mask
green The green value of the mask
blue The blue value of the mask

05-GPFT-Ch5 4/10/05 3:59 AM Page 124

Figure 5.15 is a picture of this program. Beautiful, isn't it? It looks as if the frog is actual-
ly part of the image! On the CD, demo05-04.bb is a program without masking, and
demo05-05.bb is the same program with masking.

One thing to note: an RGB value of 0,0,0 is the default. 0,0,0 is the color of black. This
means that if your image is drawn with a black border, it will automatically be masked. In
other words, try to make all your images have a black background so you don't need to
worry about masking images.

You might have noticed the command Flip at the end of the program. By default,
BlitzPlus draws its information on the back buffer. By using Flip, you move the informa-
tion from the buffer to the screen. We will learn more about this in later chapters.

Colors
Before I end this chapter, I want to teach you how to work with color. Of course, color is
an integral part of any program. When using page flipping (which is explained in the next
chapter), color takes on an even greater importance.

You need to know some functions before you move on to the next chapter. These func-
tions are Color, Cls, and ClsColor. You also need to understand RGB values.

Colors 125

Figure 5.15 An image drawn with a mask.

05-GPFT-Ch5 4/10/05 3:59 AM Page 125

RGB
When working with color, you will often encounter RGB (red, green, blue) values. These
numbers allow you to pick any one of 16 million different colors. That's a lot, huh?

When color is used in functions, there are usually three fields for you to enter your choic-
es—red, green, and blue. For each field, you can pick a number between 0 and 255 (256
choices total). The higher the number, the more of that color there will be. For example,
if you set the red value to 255 and the green and blue values to zero (255,0,0), you will
have a perfectly red color. 0,0,0 is black, and 255,255,255 is white.

Now, you may be wondering how you are supposed to find the exact values for the color
you want. Well, there are two ways. You can use guess and check (by putting in guesses for
the red, green, and blue fields) or you can use a program, such as Microsoft Paint.

Open Microsoft Paint by going to Start Menu>All Programs>Accessories>Paint. See
Figure 5.16 for a visual image of Microsoft Paint and how to open it (the background is
Paint, the foreground is the Start menu [your menu will probably be a little different]).
Nowchoose Colors>Edit Colors. A window will pop up. Click where it says Define
Custom Colors. Figure 5.17 shows you the custom colors box.

Chapter 5 ■ Beginning Graphics126

Why 16 Million?

When you are using RGB values, you usually pick a number between 0 and 255 for each color.What
does this have to do with the amount of colors? Well, if you multiply 256 by itself three times
because there are three colors (256 � 256 � 256), you get 16.7 million. This means that you have
all 16.7 million values to choose from.

05-GPFT-Ch5 4/10/05 3:59 AM Page 126

Now choose your color, and it should
tell you the RGB value on the bot-
tom. If it doesn't work at first, move
the scrollbar on the far right, and
then proceed to pick your color.

That's pretty much all there is to
RGB. You're ready to use color in
your programs now.

Colors 127

Figure 5.16 Opening Microsoft Paint.

Figure 5.17 Defining custom colors.

05-GPFT-Ch5 4/10/05 3:59 AM Page 127

Color
Color is kind of a fun function. It defines what the default color of the program is. When
you draw something, be it lines, shapes, or text (not images), it will be drawn with the
defined color.

What can you do with Color? If you want to make the text anything other than white, just
use this. Or maybe you want to draw a green triangle. Just set the color to green and draw
it! You can change the color at any time.

n o t e

The default color of any BlitzPlus program (before you call Color) is white (RGB 255,255,255).

You can start with the function declaration.

Color red, green, blue

See Table 5.10 for the parameters. You will most likely just put in the red, green, and blue
values to get your color.

Now let's write a program that
uses this function. This program
will draw a bunch of ellipses with
random sizes and colors.

;;;;;;;;;;;;;;;;;;;;;;
;demo05-06.bb
;By Maneesh Sethi
;Demonstrates the Color function, draws ellipses
;No Input Parameters required
;;;;;;;;;;;;;;;;;;;;;;
Graphics 800,600

;Seed random generator
SeedRnd (MilliSecs())

;Max width of ellipse
Const MAXWIDTH = 200
;Max Height of ellipse

Chapter 5 ■ Beginning Graphics128

Table 5.10 Color's Parameters

Name Description

red The color's red value
green The color's green value
blue The color's blue value

05-GPFT-Ch5 4/10/05 3:59 AM Page 128

Const MAXHEIGHT = 200

;Main Loop
While Not KeyDown(1)

;Clear the screen
Cls

;Set the color to a random value
Color Rand(0,255), Rand(0,255), Rand(0,255)

;Draw a random oval
Oval Rand(0,800),Rand(0,600),Rand(0,MAXWIDTH),Rand(0,MAXHEIGHT), Rand(0,1)

;Slow down!
Delay 50
Flip
Wend

Pretty cool, huh? Figure 5.18 shows a screenshot from the program. Let's look a little clos-
er. The program first sets the graphics mode and seeds the random generator. Then it
defines the maximum width and height of each ellipse. Feel free to change the values.

Next, the game enters the main loop. It first sets the color to a random value, using the line

Color Rand(0,255), Rand(0,255), Rand(0,255)

This allows the next line to draw an ellipse with the random color. The ellipse function
(notice that it is actually called Oval—I just like the word ellipse) is defined like this:

Oval x,y,width,height[,solid]

Take a look at Table 5.11 for each parameter.

Colors 129

Table 5.11 Oval's Parameters

Parameter Description

x The x coordinate of the ellipse
y The y coordinate of the ellipse
width The width in pixels of the ellipse
height The height in pixels of the ellipse
[solid] Default value is 0; set to 1 if you prefer the ellipse to be filled. Otherwise, the inner

region will be transparent

05-GPFT-Ch5 4/10/05 3:59 AM Page 129

Well, that's pretty much it for the Color function. Next up—the Cls and the ClsColor
functions.

Cls and ClsColor
We are almost done with this chapter! Before I send you packing, though, I want you to
have a bit of basis for the next chapter.

The function Cls's action is pretty simple. All it does is clear the screen. The next chapter
goes over it in more depth. The ClsColor function works with Cls to allow you to change
the background of your program.

ClsColor is defined like this:

ClsColor red,green,blue

See Table 5.12 for a description of each parameter.

Chapter 5 ■ Beginning Graphics130

Figure 5.18 The demo05-06.bb program.

05-GPFT-Ch5 4/10/05 3:59 AM Page 130

ClsColor's job is to change the background color. This means that you can leave the default
black behind and make the background anything you want it to be. To use this function,
call ClsColor with the red, green, and blue values you want, and then call Cls to actually
clear the screen with the background color.

Let's try a program. Demo05-07.bb makes a bunch of colors appear on the screen (along
with some advice you should follow). Try it out!

Summary
Okay, you now have a working knowledge of graphics in video games. In this chapter, we
learned about a lot of functions: Graphics, LoadImage(), DrawImage(), CreateImage(),
ImageBuffer(), and MaskImage(). Believe me, you will find many uses for all of these func-
tions in your games.

This chapter studied the topics of:

■ Creating a graphics window

■ Loading, drawing, and using images

■ Using colors

Next up, we learn about page flipping and basic input. The following chapter is important
because you learn about basic animation.

Summary 131

Table 5.12 ClsColor's Parameters

Name Description

red The color's red value
green The color's green value
blue The color's blue value

05-GPFT-Ch5 4/10/05 4:00 AM Page 131

05-GPFT-Ch5 4/10/05 4:00 AM Page 132

