
455

Vertical Scrolling
Arcade Games

chapter 13

M
ost arcade games created and distributed to video arcades in the 1980s and
1990s were scrolling shoot-em-up games (also called simply shooters). About an
equal number of vertical and horizontal shooters were released. This chapter

focuses on vertical shooters (such as Mars Matrix) and the next chapter deals with the
horizontal variety (although it focuses on platform “jumping” games, not shooters). Why
focus two whole chapters on the subject of scrolling games? Because this subject is too
often ignored. Most aspiring game programmers know what a shooter is but have no real
idea how to develop one. That’s where this chapter comes in! This chapter discusses the
features and difficulties associated with vertical shooters and explains how to develop a
vertical scroller engine, which is used to create a sample game called Warbirds Pacifica,
a 1942-style arcade game with huge levels and professionally-drawn artwork.

Here is a breakdown of the major topics in this chapter:

� Building a vertical scroller engine

� Writing a vertical scrolling shooter

Building a Vertical Scroller Engine
Scrolling shooters are interesting programming problems for anyone who has never created
one before (and who has benefited from an experienced mentor). In the past, you have cre-
ated a large memory bitmap and blitted the tiles into their appropriate places on that
bitmap, which could then be used as a large game world (for instance, in an earlier revision
of Tank War). A scrolling shooter, on the other hand, has a game world that is far too large
for a single bitmap. For that matter, most games have a world that is too large for a single
bitmap, and using such a bitmap goes against good design practices. The world is comprised
of tiles, after all, so it would make sense to draw only the tiles needed by the current view.

13 AllinOne ch13 5/19/04 10:08 PM Page 455

But for the sake of argument, how big of a world bitmap would you have to use? Mappy
(the map editor tool covered in the previous chapter) supports a map of around 30,000
tiles. If you are using a standard 640-pixels-wide screen for a game, that is 20 tiles across,
assuming each tile is 32×32. Thirty-thousand tiles divided by 20 tiles across gives
you…how many? Fifteen-hundred tiles spread vertically. At 32 pixels each, that is a
bitmap image of 640×48,000. That is ridiculously large—so large that I do not need to
argue the point any further. Of course, the game world can be much smaller than this, but
a good scrolling shooter will have nice, large levels to conquer.

What you need is a vertical scrolling game engine capable of blitting only those tiles needed
by the current display. I once wrote a game called Warbirds for another book titled Visual
Basic Game Programming with DirectX (Premier Press, 2002). The game featured a ran-
domly generated vertical scrolling level with warping. This meant that when the scrolling
reached the end of the level, it wrapped around to the start of the level and continued
scrolling the level without interruption (see Figure 13.1).

Given that the levels were generated ran-
domly, the game could go on forever with-
out the need for new levels. Unfortunately,
as you might have guessed, the levels were
quite boring and repetitive. Even with a
fairly good warping technique and ran-
dom map generator, the levels were not
very attractive. See Figure 13.2 for a screen-
shot of Warbirds.

If you don’t want to use wraparound, or
warping, then what happens when the
scroller reaches the end? Of course, that’s
the end of the level. At this point, you
want to display the score, congratulate the
player, add bonus points, and then pro-
ceed to load the next level of the game.

The vertical scroller engine that you’ll put together shortly will just sort of stop when it
reaches the end of the level; this is a design decision, because I want you to take it from
there (load the next level). Then, you can add the custom artwork for a new scrolling
shooter, and I’ll provide a template by having you build a sample game at the end of this
chapter: Warbirds Pacifica.

Chapter 13 � Vertical Scrolling Arcade Games456

Figure 13.1 Level warping occurs when the end
of the level is reached in a scrolling game.

13 AllinOne ch13 5/19/04 10:08 PM Page 456

Building a Vertical Scroller Engine 457

Creating Levels Using Mappy
The Warbirds Pacifica game developed later in this chapter will use high-quality custom
levels created with Mappy (which was covered in the previous chapter). Although I sug-
gested using a data array for the maps in simple games, that is not suitable for a game like
a scrolling shooter—this game needs variety! To maximize the potential for this game, I’m
going to create a huge map file that is 20 tiles wide and 1,500 tiles high! That’s equivalent
to an image that is 640×48,000 pixels in size. This game will be fun; oh yes, it will be!

If you read the previous chapter, then you should have Mappy handy. If not, I recommend
you go back and read Chapter 12 because familiarity with Mappy is crucial for getting the
most out of this chapter and the one that follows.

Assuming you have Mappy fired up, open the File menu and select New Map. First, be sure
to select the Paletted (8bit) option. You want to use simple 8-bit tiles when possible to
lighten the memory load with MappyAL, although you may use hi-color or true color tiles
if you want. (I wouldn’t recommend it generally.) You might recall from the last chapter
that MappyAL is a public domain source code library for reading and displaying a Mappy
level, and that is what you’ll use in this chapter to avoid having to create a tile engine from
scratch. Next, for the width and height of each tile, enter 32 and 32, respectively. Next, for
the map size, enter 20 for the width and 1500 for the height, as shown in Figure 13.3.

t i p

Be sure to select Paletted (8bit) for the color depth of a new map in Mappy if you intend to use the
MappyAL library in your Allegro games.

Figure 13.2 Warbirds featured a randomly-generated scrolling map.

13 AllinOne ch13 5/19/04 10:08 PM Page 457

Mappy will create a new map based on
your specifications, and then will wait for
you to import some tiles (see Figure 13.4).

Now open the File menu and select Import to bring up the File Open dialog box. This is
the part where you have some options. You can use the large collection of tiles I have put
together for this chapter or you can create your own tiles and use them. Your results will
certainly look different, but if you have your own tiles, by all means use them. Otherwise,
I recommend that you copy the maptiles8.bmp file from the CD-ROM to a folder on your
hard drive. The tile image is located in \chapter13\VerticalScroller on the CD-ROM under
the sources folder for the environment you are using (Visual C++, KDevelop, or Dev-
C++). Select this file using the File Open dialog box, and the 32×32 tiles will be added to
the tile palette in Mappy (see Figure 13.5).

Chapter 13 � Vertical Scrolling Arcade Games458

Figure 13.3 Creating a new map in Mappy for
the vertical scroller demo

Figure 13.4 Mappy has created the new map and is now waiting for tiles.

13 AllinOne ch13 5/19/04 10:08 PM Page 458

If the tiles look familiar, it’s because most of them were used in the last chapter. I added
new tiles to the maptiles.bmp file while working on the Warbirds Europa game. Note that
when you add new tiles, you must add them to the bottom row of tiles, not to a column
on the right. Mappy reads the tiles from left to right, top to bottom. You can add new tiles
to the bottom of the maptiles.bmp file (which I have called maptiles8.bmp to reflect that
it is an 8-bit image with 256 colors), and then import the file again into your Mappy map
to start using new tiles. Simply select the first tile in the tile palette before you import
again, and the existing tiles will be replaced with the new tiles.

Filling in the Tiles
Now that you have a big blank slate for the level, I want to show you how to create a tem-
plate map file. Because the sample game in this chapter is a World War II shooter based
on the arcade game 1942, you can fill the entire level with a neutral water tile and then
save it as a template. At that point, it will be relatively easy to use this template to create a
number of levels for the actual game.

Building a Vertical Scroller Engine 459

Figure 13.5 The tile palette has been filled with tiles imported from a bitmap file.

13 AllinOne ch13 5/19/04 10:08 PM Page 459

Chapter 13 � Vertical Scrolling Arcade Games460

t i p

All of the graphics in this game are available in the free SpriteLib GPL at http://www.arifeldman.
com. Thanks to Ari Feldman for allowing me to use his tiles and sprites in this chapter.

Locate a water tile that is appealing to you. I have added two new water tiles just for this
chapter, again from SpriteLib. Again, this was created by Ari Feldman and released into the
public domain with his blessing. However, I encourage you to visit Ari’s Web site at
http://www.arifeldman.com to contact him about commissioning custom artwork for
your own games. These are high-quality sprite tiles, and I am grateful to Ari for allowing
me to use them.

Because this map is so big, it would take a very long time to fill in all the tiles manually.
Thankfully, Mappy suports the Lua scripting language. Although it’s beyond the scope of
this chapter, you can edit Lua scripts and use them in Mappy. One such script is called
Solid Rectangle, and it fills a region of the map with the selected tile. Unfortunately, there’s
a bug in this Lua script so it leaves out the last row and column of tiles. On a map this big,
it takes a long time just to fill in a single column or row. I fixed the bug and have included
the script on the CD-ROM. If you have just copied Mappy off the CD-ROM, then you
should have the fix. If you have downloaded a new version of Mappy, then you’ll have to
fill in the unfilled tiles manually.

Having selected an appropriate water tile, open the Custom menu and select Solid
Rectangle. A dialog box will appear, asking you to enter four numbers separated by com-
mas. Type in these values:

0,0,20,1500

If you have the buggy version of this script, then type in:

0,0,19,1499

Now save the map as template.fmp so it can be reused to create each level of the game. By
the way, while you have one large ocean level available, why not have some fun playing
with Mappy? See what kind of interesting ocean level you can create using the available
tiles. The map should look interesting, but it won’t be critical to the game because all the
action will take place in the skies.

Let’s Scroll It
Now that you have a map ready to use, you can write a short program to demonstrate the
feasibility of a very large scrolling level. Figure 13.6 shows the output from the
VerticalScroller program. As was the case in the last chapter, you will need the MappyAL
files to run this program. The mappyal.c and mappyal.h files are located on the CD-ROM
under \chapter13\VerticalScroller.

13 AllinOne ch13 5/19/04 10:08 PM Page 460

#include “allegro.h”
#include “mappyal.h”

//this must run at 640x480
#define MODE GFX_AUTODETECT_FULLSCREEN
//#define MODE GFX_AUTODETECT_WINDOWED
#define WIDTH 640
#define HEIGHT 480
#define WHITE makecol(255,255,255)

#define BOTTOM 48000 - HEIGHT
//y offset in pixels
int yoffset = BOTTOM;

//timer variables
volatile int counter;
volatile int ticks;
volatile int framerate;

//double buffer
BITMAP *buffer;

Building a Vertical Scroller Engine 461

Figure 13.6 The VerticalScroller program contains the code for a basic
vertical scroller engine.

13 AllinOne ch13 5/19/04 10:08 PM Page 461

//calculate framerate every second
void timer1(void)
{

counter++;
framerate = ticks;
ticks=0;

}
END_OF_FUNCTION(timer1)

void main (void)
{

//initialize program
allegro_init();
install_timer();
install_keyboard();

// set_color_depth(16);
set_gfx_mode(MODE, WIDTH, HEIGHT, 0, 0);

text_mode(-1);

//create the double buffer and clear it
buffer = create_bitmap(SCREEN_W, SCREEN_H);
if (buffer==NULL)

{
set_gfx_mode(GFX_TEXT, 0, 0, 0, 0);
allegro_message(“Error creating double buffer”);
return;

}
clear(buffer);

//load the Mappy file
if (MapLoad(“level1.fmp”))

{
set_gfx_mode(GFX_TEXT, 0, 0, 0, 0);

allegro_message (“Can’t find level1.fmp”);
return;

}

//set palette
MapSetPal8();

//identify variables used by interrupt function
LOCK_VARIABLE(counter);

Chapter 13 � Vertical Scrolling Arcade Games462

13 AllinOne ch13 5/19/04 10:08 PM Page 462

LOCK_VARIABLE(framerate);
LOCK_VARIABLE(ticks);
LOCK_FUNCTION(timer1);

//create new interrupt handler
install_int(timer1, 1000);

//main loop
while (!key[KEY_ESC])

{
//check for keyboard input

if (key[KEY_PGUP]) yoffset-=4;
if (key[KEY_PGDN]) yoffset+=4;

if (key[KEY_UP]) yoffset-=1;
if (key[KEY_DOWN]) yoffset+=1;

//make sure it doesn’t scroll beyond map edge
if (yoffset < 0) yoffset = 0;
if (yoffset > BOTTOM) yoffset = BOTTOM;

//draw map with single layer
MapDrawBG(buffer, 0, yoffset, 0, 0, SCREEN_W-1, SCREEN_H-1);

//update ticks
ticks++;

//display some status information
textprintf(buffer,font,0,440,WHITE,”yoffset %d”,yoffset);
textprintf(buffer,font,0,450,WHITE,”counter %d”, counter);
textprintf(buffer,font,0,460,WHITE,”framerate %d”, framerate);

//blit the double buffer
acquire_screen();

blit (buffer, screen, 0, 0, 0, 0, SCREEN_W-1, SCREEN_H-1);
release_screen();

}

//delete double buffer
destroy_bitmap(buffer);

//delete the Mappy level
MapFreeMem();

Building a Vertical Scroller Engine 463

13 AllinOne ch13 5/19/04 10:08 PM Page 463

Chapter 13 � Vertical Scrolling Arcade Games464

allegro_exit();
return;

}

END_OF_MAIN()

Writing a Vertical Scrolling Shooter
To best demonstrate a vertical scroller, I have created a simple scrolling shooter as a sam-
ple game that you can use as a template for your own games of this genre. Simply replace
the map file with one of your own design and replace the basic sprites used in the game,
and you can adapt this game for any theme—water, land, undersea, or outer space.

Whereas the player’s airplane uses local coordinates reflecting the display screen, the enemy
planes use world coordinates that range from 0–639 in the horizontal and 0–47,999 in the
vertical. Hey, I told you these maps were huge! The key to making this game work is that a
test is performed after each sprite is drawn to determine whether it is within the visible
range of the screen. Keep in mind that while the enemy fighters are moving toward the
player, the map itself is scrolling downward to simulate forward movement.

Describing the Game
I have called this game Warbirds Pacifica because it was based on my earlier Warbirds game
but set in the Pacific campaign of World War II. The game is set over ocean tiles with fre-
quent islands to help improve the sense of motion (see Figure 13.7).

Figure 13.7 Warbirds Pacifica is a vertical scrolling shooter.

13 AllinOne ch13 5/19/04 10:08 PM Page 464

Writing a Vertical Scrolling Shooter 465

This is a fast-paced game and even with numerous sprites on the screen, the scrolling
engine (provided by MappyAL) doesn’t hiccup at all. Take a look at Figure 13.8. The player
has a variable firing rate that is improved by picking up power-ups.

Another cool aspect of the game, thanks to Allegro’s awesome sprite handling, is that explo-
sions can overlap power-ups and other bullet sprites due to internal transparency within
the sprites (see Figure 13.9).
Note also the numerous
debug-style messages in the
bottom-left corner of the
screen. While developing a
game, it is extremely helpful
to see status values that
describe what is going on in
order to tweak gameplay. I
have modified many aspects
of the game thanks to these
messages.

Figure 13.8 The firing rate of the player’s P-38 fighter plane is
improved with power-ups.

Figure 13.9 Destroying enemy planes releases power-ups that
will improve the player’s P-38 fighter.

13 AllinOne ch13 5/19/04 10:08 PM Page 465

Of course, what would the game be like without any challenge? Although this very early
alpha version of Warbirds Pacifica does not have the code to allow enemy planes to fire at
the player, it does detect collisions with enemy planes, which cause the player’s P-38 to
explode. (Although gameplay continues, the life meter at the top drops.) One of the first
things you will want to do to enhance the game is add enemy firepower (see Figure 13.10).

The Game’s Artwork
This game is absolutely loaded with potential! There is so much that could be done with
it that I really had to hold myself back when putting the game together as a technology
demo for this chapter. It was so much fun adding just a single power-up that I came very
close to adding all the rest of the power-ups to the game, including multi-shots! Why such
enthusiasm? Because the artwork is already available for building an entire game, thanks
to the generosity of Ari Feldman. The artwork featured in this game is a significant part
of Ari’s SpriteLib.

Let me show you some examples of the additional sprites available that you could use to
quickly enhance this game. Figure 13.11 shows a set of enemy bomber sprites. The next
image, Figure 13.12, shows a collection of enemy fighter planes that could be used in the
game. Notice the different angles. Most shooters will launch squadrons of enemies at the
player in formation, which is how these sprites might be used.

Chapter 13 � Vertical Scrolling Arcade Games466

Figure 13.10 The enemy planes might not have much firepower, but
they are still capable of Kamikaze attacks!

13 AllinOne ch13 5/19/04 10:08 PM Page 466

The next image, Figure 13.13, is an animated enemy submarine that comes up out of the
water to shoot at the player. This would be a great addition to the game!

Yet another source of sprites for this game is
shown in Figure 13.14—an enemy battleship
with rotating gun turrets! The next image,
Figure 13.15, shows a number of high-quality
power-up sprites and bullet sprites. I used the
shot power-up in the game as an example so
that you can add more power-ups to the game.

Of course, a high-quality arcade game needs a
high-quality font that looks really great on
the screen. The default font with Allegro
looks terrible and should not be used in a
game like Warbirds Pacifica. Take a look at
Figure 13.16 for a sample of the font available
for the game with SpriteLib. You can use the
existing menus and messages or construct
your own using the provided alphabet.

Writing a Vertical Scrolling Shooter 467

Figure 13.11 A set of enemy bomber sprites. Courtesy of Ari Feldman.

Figure 13.12 A collection of enemy fighter planes. Courtesy of Ari Feldman.

Figure 13.13 An enemy submarine sprite.
Courtesy of Ari Feldman.

Figure 13.14 An enemy battleship with
rotating gun turrets. Courtesy of Ari Feldman.

13 AllinOne ch13 5/19/04 10:08 PM Page 467

Writing the Source Code
The source code for Warbirds Pacifica is designed to be easy to enhance because my intent
was to provide you with a template, something to which you can apply your imagination
to complete. The game has all the basic functionality and just needs to be well-rounded
and, well, finished.

I recommend you use the VerticalScroller program as a basis because it already includes
the two support files from the MappyAL library (mappyal.c and mappyal.h). If you are
creating a new project from scratch, simply copy these two files to your new project folder
and add them to the project by right-clicking on the project name and selecting Add Files
to Project.

All the artwork for this game is located on the CD-ROM under \chapter13\Warbirds. You
can open the project directly if you are not inclined to type in the source code; however,
the more code you type in, the better programmer you will become. In my experience, just
the act of typing in a game from a source code listing is a great learning experience. I see
aspects of the game—and how it was coded—that are not apparent from simply paging

Chapter 13 � Vertical Scrolling Arcade Games468

Figure 13.15 A collection of high-quality power-ups and
bullets. Courtesy of Ari Feldman.

Figure 13.16 A high-quality font suitable for a scrolling shooter, such as
Warbirds Pacifica. Courtesy of Ari Feldman.

13 AllinOne ch13 5/19/04 10:08 PM Page 468

through the code listing. It helps you to become more intimate and familiar with the
source code. This is an absolute must if you intend to learn how the game works in order
to enhance or finish it.

warbirds.h

All of the struct and variable definitions are located in the warbirds.h file. You should add
a new file to the project (File, New, C/C++ Header File) and give it this name.

#ifndef _WARBIRDS_H
#define _WARBIRDS_H

#include “allegro.h”
#include “mappyal.h”

//this must run at 640x480
//#define MODE GFX_AUTODETECT_FULLSCREEN
#define MODE GFX_AUTODETECT_WINDOWED
#define WIDTH 640
#define HEIGHT 480

#define WHITE makecol(255,255,255)
#define GRAY makecol(60,60,60)
#define RED makecol(200,0,0)

#define MAX_ENEMIES 20
#define MAX_BULLETS 20
#define MAX_EXPLOSIONS 10
#define BOTTOM 48000 - HEIGHT

//define the sprite structure
typedef struct SPRITE
{

int dir, alive;
int x,y;
int width,height;
int xspeed,yspeed;
int xdelay,ydelay;
int xcount,ycount;
int curframe,maxframe,animdir;
int framecount,framedelay;

}SPRITE;

//y offset in pixels

Writing a Vertical Scrolling Shooter 469

13 AllinOne ch13 5/19/04 10:08 PM Page 469

int yoffset = BOTTOM;

//player variables
int firecount = 0;
int firedelay = 60;
int health = 25;
int score = 0;

//timer variables
volatile int counter;
volatile int ticks;
volatile int framerate;

//bitmaps and sprites
BITMAP *buffer;
BITMAP *temp;
BITMAP *explosion_images[6];
SPRITE *explosions[MAX_EXPLOSIONS];
BITMAP *bigexp_images[7];
SPRITE *bigexp;
BITMAP *player_images[3];
SPRITE *player;
BITMAP *bullet_images[2];
SPRITE *bullets[MAX_BULLETS];
BITMAP *enemy_plane_images[3];
SPRITE *enemy_planes[MAX_ENEMIES];
BITMAP *progress, *bar;
BITMAP *bonus_shot_image;
SPRITE *bonus_shot;

#endif

main.c

Now for the main source code file. The main.c file will contain all of the source code for
the Warbirds Pacifica template game. Remember, this game is not 100-percent functional
for a reason—it was not designed to be a polished, complete game; rather, it was designed
to be a template. To make this a complete game, you will want to create additional levels
with Mappy; add some code to handle the loading of a new level when the player reaches
the end of the first level; and add the additional enemy planes, ships, and so on, as
described earlier. Then this game will rock! Furthermore, you will learn how to add sound
effects to the game in Chapter 15, “Mastering the Audible Realm: Allegro’s Sound
Support,” which will truly round out this game!

Chapter 13 � Vertical Scrolling Arcade Games470

13 AllinOne ch13 5/19/04 10:08 PM Page 470

#include “warbirds.h”

//reuse our friendly tile grabber from chapter 9
BITMAP *grabframe(BITMAP *source,

int width, int height,
int startx, int starty,
int columns, int frame)

{
BITMAP *temp = create_bitmap(width,height);

int x = startx + (frame % columns) * width;
int y = starty + (frame / columns) * height;

blit(source,temp,x,y,0,0,width,height);

return temp;
}

void loadsprites(void)
{

int n;

//load progress bar
temp = load_bitmap(“progress.bmp”, NULL);
progress = grabframe(temp,130,14,0,0,1,0);
bar = grabframe(temp,6,10,130,2,1,0);
destroy_bitmap(temp);

//load bonus shot
bonus_shot_image = load_bitmap(“bonusshot.bmp”, NULL);
bonus_shot = malloc(sizeof(SPRITE));
bonus_shot->alive=0;
bonus_shot->x = 0;
bonus_shot->y = 0;
bonus_shot->width = bonus_shot_image->w;
bonus_shot->height = bonus_shot_image->h;
bonus_shot->xdelay = 0;
bonus_shot->ydelay = 2;
bonus_shot->xcount = 0;
bonus_shot->ycount = 0;
bonus_shot->xspeed = 0;
bonus_shot->yspeed = 1;
bonus_shot->curframe = 0;

Writing a Vertical Scrolling Shooter 471

13 AllinOne ch13 5/19/04 10:08 PM Page 471

bonus_shot->maxframe = 0;
bonus_shot->framecount = 0;
bonus_shot->framedelay = 0;

//load player airplane sprite
temp = load_bitmap(“p38.bmp”, NULL);
for (n=0; n<3; n++)

player_images[n] = grabframe(temp,64,64,0,0,3,n);
destroy_bitmap(temp);

//initialize the player’s sprite
player = malloc(sizeof(SPRITE));
player->x = 320-32;
player->y = 400;
player->width = player_images[0]->w;
player->height = player_images[0]->h;
player->xdelay = 1;
player->ydelay = 0;
player->xcount = 0;
player->ycount = 0;
player->xspeed = 0;
player->yspeed = 0;
player->curframe = 0;
player->maxframe = 2;
player->framecount = 0;
player->framedelay = 10;
player->animdir = 1;

//load bullet images
bullet_images[0] = load_bitmap(“bullets.bmp”, NULL);

//initialize the bullet sprites
for (n=0; n<MAX_BULLETS; n++)
{

bullets[n] = malloc(sizeof(SPRITE));
bullets[n]->alive = 0;
bullets[n]->x = 0;
bullets[n]->y = 0;
bullets[n]->width = bullet_images[0]->w;
bullets[n]->height = bullet_images[0]->h;
bullets[n]->xdelay = 0;
bullets[n]->ydelay = 0;

Chapter 13 � Vertical Scrolling Arcade Games472

13 AllinOne ch13 5/19/04 10:08 PM Page 472

bullets[n]->xcount = 0;
bullets[n]->ycount = 0;
bullets[n]->xspeed = 0;
bullets[n]->yspeed = -2;
bullets[n]->curframe = 0;
bullets[n]->maxframe = 0;
bullets[n]->framecount = 0;
bullets[n]->framedelay = 0;
bullets[n]->animdir = 0;

}

//load enemy plane sprites
temp = load_bitmap(“enemyplane1.bmp”, NULL);
for (n=0; n<3; n++)

enemy_plane_images[n] = grabframe(temp,32,32,0,0,3,n);
destroy_bitmap(temp);

//initialize the enemy planes
for (n=0; n<MAX_ENEMIES; n++)
{

enemy_planes[n] = malloc(sizeof(SPRITE));
enemy_planes[n]->alive = 0;
enemy_planes[n]->x = rand() % 100 + 50;
enemy_planes[n]->y = 0;
enemy_planes[n]->width = enemy_plane_images[0]->w;
enemy_planes[n]->height = enemy_plane_images[0]->h;
enemy_planes[n]->xdelay = 4;
enemy_planes[n]->ydelay = 4;
enemy_planes[n]->xcount = 0;
enemy_planes[n]->ycount = 0;
enemy_planes[n]->xspeed = (rand() % 2 - 3);
enemy_planes[n]->yspeed = 1;
enemy_planes[n]->curframe = 0;
enemy_planes[n]->maxframe = 2;
enemy_planes[n]->framecount = 0;
enemy_planes[n]->framedelay = 10;
enemy_planes[n]->animdir = 1;

}

//load explosion sprites
temp = load_bitmap(“explosion.bmp”, NULL);
for (n=0; n<6; n++)

explosion_images[n] = grabframe(temp,32,32,0,0,6,n);

Writing a Vertical Scrolling Shooter 473

13 AllinOne ch13 5/19/04 10:08 PM Page 473

destroy_bitmap(temp);

//initialize the sprites
for (n=0; n<MAX_EXPLOSIONS; n++)
{

explosions[n] = malloc(sizeof(SPRITE));
explosions[n]->alive = 0;
explosions[n]->x = 0;
explosions[n]->y = 0;
explosions[n]->width = explosion_images[0]->w;
explosions[n]->height = explosion_images[0]->h;
explosions[n]->xdelay = 0;
explosions[n]->ydelay = 8;
explosions[n]->xcount = 0;
explosions[n]->ycount = 0;
explosions[n]->xspeed = 0;
explosions[n]->yspeed = -1;
explosions[n]->curframe = 0;
explosions[n]->maxframe = 5;
explosions[n]->framecount = 0;
explosions[n]->framedelay = 15;
explosions[n]->animdir = 1;

}

//load explosion sprites
temp = load_bitmap(“bigexplosion.bmp”, NULL);
for (n=0; n<8; n++)

bigexp_images[n] = grabframe(temp,64,64,0,0,7,n);
destroy_bitmap(temp);

//initialize the sprites
bigexp = malloc(sizeof(SPRITE));
bigexp->alive = 0;
bigexp->x = 0;
bigexp->y = 0;
bigexp->width = bigexp_images[0]->w;
bigexp->height = bigexp_images[0]->h;
bigexp->xdelay = 0;
bigexp->ydelay = 8;
bigexp->xcount = 0;
bigexp->ycount = 0;
bigexp->xspeed = 0;
bigexp->yspeed = -1;

Chapter 13 � Vertical Scrolling Arcade Games474

13 AllinOne ch13 5/19/04 10:08 PM Page 474

bigexp->curframe = 0;
bigexp->maxframe = 6;
bigexp->framecount = 0;
bigexp->framedelay = 10;
bigexp->animdir = 1;

}

int inside(int x,int y,int left,int top,int right,int bottom)
{

if (x > left && x < right && y > top && y < bottom)
return 1;

else
return 0;

}

void updatesprite(SPRITE *spr)
{

//update x position
if (++spr->xcount > spr->xdelay)
{

spr->xcount = 0;
spr->x += spr->xspeed;

}

//update y position
if (++spr->ycount > spr->ydelay)
{

spr->ycount = 0;
spr->y += spr->yspeed;

}

//update frame based on animdir
if (++spr->framecount > spr->framedelay)
{

spr->framecount = 0;
if (spr->animdir == -1)
{

if (—spr->curframe < 0)
spr->curframe = spr->maxframe;

}
else if (spr->animdir == 1)
{

Writing a Vertical Scrolling Shooter 475

13 AllinOne ch13 5/19/04 10:08 PM Page 475

if (++spr->curframe > spr->maxframe)
spr->curframe = 0;

}
}

}

void startexplosion(int x, int y)
{

int n;
for (n=0; n<MAX_EXPLOSIONS; n++)
{

if (!explosions[n]->alive)
{

explosions[n]->alive++;
explosions[n]->x = x;
explosions[n]->y = y;
break;

}
}

//launch bonus shot if ready
if (!bonus_shot->alive)
{

bonus_shot->alive++;
bonus_shot->x = x;
bonus_shot->y = y;

}
}

void updateexplosions()
{

int n, c=0;

for (n=0; n<MAX_EXPLOSIONS; n++)
{

if (explosions[n]->alive)
{

c++;
updatesprite(explosions[n]);
draw_sprite(buffer, explosion_images[explosions[n]->curframe],

explosions[n]->x, explosions[n]->y);

Chapter 13 � Vertical Scrolling Arcade Games476

13 AllinOne ch13 5/19/04 10:08 PM Page 476

if (explosions[n]->curframe >= explosions[n]->maxframe)
{

explosions[n]->curframe=0;
explosions[n]->alive=0;

}
}

}
textprintf(buffer,font,0,430,WHITE,”explosions %d”, c);

//update the big “player” explosion if needed
if (bigexp->alive)
{

updatesprite(bigexp);
draw_sprite(buffer, bigexp_images[bigexp->curframe],

bigexp->x, bigexp->y);
if (bigexp->curframe >= bigexp->maxframe)
{

bigexp->curframe=0;
bigexp->alive=0;

}
}

}

void updatebonuses()
{

int x,y,x1,y1,x2,y2;

//add more bonuses here

//update bonus shot if alive
if (bonus_shot->alive)
{

updatesprite(bonus_shot);
draw_sprite(buffer, bonus_shot_image, bonus_shot->x, bonus_shot->y);
if (bonus_shot->y > HEIGHT)

bonus_shot->alive=0;

//see if player got the bonus
x = bonus_shot->x + bonus_shot->width/2;
y = bonus_shot->y + bonus_shot->height/2;
x1 = player->x;
y1 = player->y;

Writing a Vertical Scrolling Shooter 477

13 AllinOne ch13 5/19/04 10:08 PM Page 477

x2 = x1 + player->width;
y2 = y1 + player->height;

if (inside(x,y,x1,y1,x2,y2))
{

//increase firing rate
if (firedelay>20) firedelay-=2;

bonus_shot->alive=0;
}

}

}

void updatebullet(SPRITE *spr)
{

int n,x,y;
int x1,y1,x2,y2;

//move the bullet
updatesprite(spr);

//check bounds
if (spr->y < 0)
{

spr->alive = 0;
return;

}

for (n=0; n<MAX_ENEMIES; n++)
{

if (enemy_planes[n]->alive)
{

//find center of bullet
x = spr->x + spr->width/2;
y = spr->y + spr->height/2;

//get enemy plane bounding rectangle
x1 = enemy_planes[n]->x;
y1 = enemy_planes[n]->y - yoffset;
x2 = x1 + enemy_planes[n]->width;
y2 = y1 + enemy_planes[n]->height;

Chapter 13 � Vertical Scrolling Arcade Games478

13 AllinOne ch13 5/19/04 10:08 PM Page 478

//check for collisions
if (inside(x, y, x1, y1, x2, y2))
{

enemy_planes[n]->alive=0;
spr->alive=0;
startexplosion(spr->x+16, spr->y);
score+=2;
break;

}
}

}
}

void updatebullets()
{

int n;
//update/draw bullets
for (n=0; n<MAX_BULLETS; n++)

if (bullets[n]->alive)
{

updatebullet(bullets[n]);
draw_sprite(buffer,bullet_images[0], bullets[n]->x, bullets[n]->y);

}
}

void bouncex_warpy(SPRITE *spr)
{

//bounces x off bounds
if (spr->x < 0 - spr->width)
{

spr->x = 0 - spr->width + 1;
spr->xspeed *= -1;

}

else if (spr->x > SCREEN_W)
{

spr->x = SCREEN_W - spr->xspeed;
spr->xspeed *= -1;

}

//warps y if plane has passed the player
if (spr->y > yoffset + 2000)

Writing a Vertical Scrolling Shooter 479

13 AllinOne ch13 5/19/04 10:08 PM Page 479

{
//respawn enemy plane
spr->y = yoffset - 1000 - rand() % 1000;
spr->alive++;
spr->x = rand() % WIDTH;

}

//warps y from bottom to top of level
if (spr->y < 0)
{

spr->y = 0;
}

else if (spr->y > 48000)
{

spr->y = 0;
}

}

void fireatenemy()
{

int n;
for (n=0; n<MAX_BULLETS; n++)
{

if (!bullets[n]->alive)
{

bullets[n]->alive++;
bullets[n]->x = player->x;
bullets[n]->y = player->y;
return;

}
}

}

void displayprogress(int life)
{

int n;
draw_sprite(buffer,progress,490,15);

for (n=0; n<life; n++)
draw_sprite(buffer,bar,492+n*5,17);

}

Chapter 13 � Vertical Scrolling Arcade Games480

13 AllinOne ch13 5/19/04 10:08 PM Page 480

void updateenemyplanes()
{

int n, c=0;

//update/draw enemy planes
for (n=0; n<MAX_ENEMIES; n++)
{

if (enemy_planes[n]->alive)
{

c++;
updatesprite(enemy_planes[n]);
bouncex_warpy(enemy_planes[n]);

//is plane visible on screen?
if (enemy_planes[n]->y > yoffset-32 && enemy_planes[n]->y <

yoffset + HEIGHT+32)
{

//draw enemy plane
draw_sprite(buffer, enemy_plane_images[enemy_planes[n]->curframe],

enemy_planes[n]->x, enemy_planes[n]->y - yoffset);
}

}
//reset plane
else
{

enemy_planes[n]->alive++;
enemy_planes[n]->x = rand() % 100 + 50;
enemy_planes[n]->y = yoffset - 2000 + rand() % 2000;

}
}
textprintf(buffer,font,0,470,WHITE,”enemies %d”, c);

}

void updatescroller()
{

//make sure it doesn’t scroll beyond map edge
if (yoffset < 5)
{

//level is over
yoffset = 5;
textout_centre(buffer, font, “END OF LEVEL”, SCREEN_W/2,

SCREEN_H/2, WHITE);
}

Writing a Vertical Scrolling Shooter 481

13 AllinOne ch13 5/19/04 10:08 PM Page 481

if (yoffset > BOTTOM) yoffset = BOTTOM;

//scroll map up 1 pixel
yoffset-=1;

//draw map with single layer
MapDrawBG(buffer, 0, yoffset, 0, 0, SCREEN_W-1, SCREEN_H-1);

}

void updateplayer()
{

int n,x,y,x1,y1,x2,y2;

//update/draw player sprite
updatesprite(player);
draw_sprite(buffer, player_images[player->curframe],

player->x, player->y);

//check for collision with enemy planes
x = player->x + player->width/2;
y = player->y + player->height/2;
for (n=0; n<MAX_ENEMIES; n++)
{

if (enemy_planes[n]->alive)
{

x1 = enemy_planes[n]->x;
y1 = enemy_planes[n]->y - yoffset;
x2 = x1 + enemy_planes[n]->width;
y2 = y1 + enemy_planes[n]->height;
if (inside(x,y,x1,y1,x2,y2))
{

enemy_planes[n]->alive=0;
if (health > 0) health—;
bigexp->alive++;
bigexp->x = player->x;
bigexp->y = player->y;
score++;

}
}

}
}

Chapter 13 � Vertical Scrolling Arcade Games482

13 AllinOne ch13 5/19/04 10:08 PM Page 482

void displaystats()
{

//display some status information
textprintf(buffer,font,0,420,WHITE,”firing rate %d”, firedelay);
textprintf(buffer,font,0,440,WHITE,”yoffset %d”,yoffset);
textprintf(buffer,font,0,450,WHITE,”counter %d”, counter);
textprintf(buffer,font,0,460,WHITE,”framerate %d”, framerate);

//display score
textprintf(buffer,font,22,22,GRAY,”SCORE: %d”, score);
textprintf(buffer,font,20,20,RED,”SCORE: %d”, score);

}

void checkinput()
{

//check for keyboard input
if (key[KEY_UP])
{

player->y -= 1;
if (player->y < 100)

player->y = 100;
}
if (key[KEY_DOWN])
{

player->y += 1;
if (player->y > HEIGHT-65)

player->y = HEIGHT-65;
}
if (key[KEY_LEFT])
{

player->x -= 1;
if (player->x < 0)

player->x = 0;
}
if (key[KEY_RIGHT])
{

player->x += 1;
if (player->x > WIDTH-65)

player->x = WIDTH-65;
}

if (key[KEY_SPACE])
{

Writing a Vertical Scrolling Shooter 483

13 AllinOne ch13 5/19/04 10:08 PM Page 483

if (firecount > firedelay)
{

firecount = 0;
fireatenemy();

}
}

}

//calculate framerate every second
void timer1(void)
{

counter++;
framerate = ticks;
ticks=0;
rest(2);

}
END_OF_FUNCTION(timer1)

void initialize()
{

//initialize program
allegro_init();
install_timer();
install_keyboard();

set_color_depth(16);
set_gfx_mode(MODE, WIDTH, HEIGHT, 0, 0);

text_mode(-1);
srand(time(NULL));

//create the double buffer and clear it
buffer = create_bitmap(SCREEN_W, SCREEN_H);
if (buffer==NULL)

{
set_gfx_mode(GFX_TEXT, 0, 0, 0, 0);
allegro_message(“Error creating double buffer”);
return;

}
clear(buffer);

//load the Mappy file
if (MapLoad(“level1.fmp”))

{

Chapter 13 � Vertical Scrolling Arcade Games484

13 AllinOne ch13 5/19/04 10:08 PM Page 484

set_gfx_mode(GFX_TEXT, 0, 0, 0, 0);
allegro_message (“Can’t find level1.fmp”);
return;

}

//set palette
MapSetPal8();

//identify variables used by interrupt function
LOCK_VARIABLE(counter);
LOCK_VARIABLE(framerate);
LOCK_VARIABLE(ticks);
LOCK_FUNCTION(timer1);

//create new interrupt handler
install_int(timer1, 1000);

}

void main (void)
{

int n;

//init game
initialize();
loadsprites();

//main loop
while (!key[KEY_ESC])

{
checkinput();

updatescroller();

updateplayer();
updateenemyplanes();

updatebullets();
updateexplosions();
updatebonuses();

displayprogress(health);
displaystats();

Writing a Vertical Scrolling Shooter 485

13 AllinOne ch13 5/19/04 10:08 PM Page 485

//blit the double buffer
acquire_screen();

blit (buffer, screen, 0, 0, 0, 0, SCREEN_W-1, SCREEN_H-1);
release_screen();

ticks++;
firecount++;

}

//delete the Mappy level
MapFreeMem();

//delete bitmaps
destroy_bitmap(buffer);
destroy_bitmap(progress);
destroy_bitmap(bar);

for (n=0; n<6; n++)
destroy_bitmap(explosion_images[n]);

for (n=0; n<3; n++)
{

destroy_bitmap(player_images[n]);
destroy_bitmap(bullet_images[n]);
destroy_bitmap(enemy_plane_images[n]);

}

//delete sprites
free(player);
for (n=0; n<MAX_EXPLOSIONS; n++)

free(explosions[n]);
for (n=0; n<MAX_BULLETS; n++)

free(bullets[n]);
for (n=0; n<MAX_ENEMIES; n++)

free(enemy_planes[n]);

allegro_exit();
return;

}

END_OF_MAIN()

Chapter 13 � Vertical Scrolling Arcade Games486

13 AllinOne ch13 5/19/04 10:08 PM Page 486

Summary
Vertical scrolling shooters were once the mainstay of the 1980s and 1990s video arcade,
but have not been as prevalent in recent years due to the invasion of 3D, so to speak. Still,
the scrolling shooter as a genre has a large and loyal fan following, so it will continue to
be popular for years to come. This chapter explored the techniques involved in creating
vertical scrollers and produced a sample template game called Warbirds Pacifica using
the vertical scroller engine (which is really powered by the MappyAL library). I hope you
enjoyed this chapter because this is not the end of the scroller! The next chapter takes a
turn—a 90-degree turn, as a matter of fact—and covers the horizontal scroller.

Chapter Quiz
You can find the answers to this chapter quiz in Appendix A, “Chapter Quiz Answers.”

1. In which game genre does the vertical shooter belong?

A. Shoot-em-up

B. Platform

C. Fighting

D. Real-time strategy

2. What is the name of the support library used as the vertical scroller engine?

A. ScrollerEngine

B. VerticalScroller

C. MappyAL

D. AllegroScroller

3. What are the virtual pixel dimensions of the levels in Warbirds Pacifica?

A. 640×480

B. 48,000×640

C. 20×1500

D. 640×48,000

4. What is the name of the level-editing program used to create the first level
of Warbirds Pacifica?

A. Happy

B. Mappy

C. Snappy

D. Frappy

Chapter Quiz 487

13 AllinOne ch13 5/19/04 10:08 PM Page 487

5. How many tiles comprise a level in Warbirds Pacifica?

A. 30,000

B. 1,500

C. 48,000

D. 32,768

6. Which of the following games is a vertical scrolling shooter?

A. R-Type

B. Mars Matrix

C. Contra

D. Castlevania

7. Who created the artwork featured in this chapter?

A. Ray Kurzweil

B. Clifford Stoll

C. Ari Feldman

D. Nicholas Negroponte

8. Which MappyAL function loads a map file?

A. LoadMap

B. MapLoad

C. LoadMappy

D. ReadLevel

9. Which MappyAL function removes a map from memory?

A. destroy_map

B. free_mappy

C. DeleteMap

D. MapFreeMem

10. Which classic arcade game inspired Warbirds Pacifica?

A. Pac-Man

B. Mars Matrix

C. 1942

D. Street Fighter II

Chapter 13 � Vertical Scrolling Arcade Games488

13 AllinOne ch13 5/19/04 10:08 PM Page 488

