
17

Principles of
Game Design

chapter 2

Anybody can recognize problems in a game after it has been created (reviewers
are especially good at this), but how do you avoid errors ahead of time? Even
though our business is young, the principles of good game design have already

been established, and paying attention to them will make yours a superior game.

This chapter deals with design principles that are broadly applicable to all game genres.
For design tips about specific genres, see Chapter 3, “Genre-Specific Game Design
Issues.”

Player Empathy
A good designer always has an idea of what’s going on in the player’s head.

This empathy for the player is crucial. You must develop the ability to put yourself in the
player’s shoes and anticipate his reaction to each element of the game. You must be able
to close your eyes and see the game unfolding like a movie in your head, all before a sin-
gle line of code has been written.

At any given point in the game, you must be able to say, “Here’s the situation the player
faces, and here are the range of choices he can make . . . Now, what will he likely want to
do?” Then, your job is to let him try, and to make the game respond intelligently to his
attempt, even if it’s only to steer him toward a different course of action.

Naturally, no designer has completely accurate foresight. That’s one reason you have
testers. Testers not only hunt for bugs, but also provide feedback on things they want to
try in the game but can’t.

02 GameDesign2_CH02 8/26/04 10:37 AM Page 17

One of the hardest things for a designer to do is to keep his mouth shut while watching
someone play his game. The urge to tell the tester to go this way instead of that way can
be overwhelming. If you steer the tester in one direction, though, you’ll never discover
what thousands of actual gamers will encounter when they go the other way instead.

Player empathy not only helps you create good gameplay, but also lets you identify and
eliminate problems during the design phase rather than during production, after code
has been written and graphics have been created. With good player empathy, you’ll write
a better game, and you’ll build it faster and more cheaply as well.

Feedback
The basic interaction between a player and a game is simple: The player does something.
The game does something in response. This feedback is what distinguishes a game from
every other form of entertainment. It’s the interactivity that makes our games unique.
Without it, the player would just be watching a movie on the screen.

Every input the player makes in the game should give him a discernible response. No
input should go unanswered. This “answer” can take many forms. It can be visual feed-
back, aural feedback, or even tactile feedback (if the controller is so equipped). It can be
positive feedback or negative feedback, but there must be some feedback.

Generally, this is easy when the player “gets” the game and is progressing nicely through
it. It becomes more difficult when he’s doing something “wrong.” Nothing is more frus-
trating for a player than pressing a key, clicking the mouse, or pushing on the controller
and having nothing happen. For every conceivable input, be sure to give the player some
feedback about it.

If you can detect what the player is doing and know how to steer him in the right direc-
tion, do so. Give him a message about what he has done. If you simply don’t understand
the input, at least send a BOOP noise back to him. He’ll quickly learn that this noise
means, “I know you tried to do something, and I heard you, but I don’t know what to do
about that.”

Grounding the Player
The player should always know where he is in the game and why he’s doing what he’s
doing. At any given point, he should have a long-term goal, a medium-range goal, and
an immediate goal. (This is true even of software toys, games that ostensibly have no
goals, but in reality have a series of goals the player creates for himself.)

Computer games are huge, and it’s easy for a player to feel lost. Also, usually games aren’t

Chapter 2 ■ Principles of Game Design18

02 GameDesign2_CH02 8/26/04 10:37 AM Page 18

played start-to-finish in one sitting. If a player has an overall map in his head, it encour-
ages him to come back to the game again and again until he’s done. Physical maps also
help (see Figure 2.1).

In a strategy game, the long-term goal can be to conquer the world. In an action/adven-
ture or RPG, it can be to defeat the ultimate bad guy. In a golf game, it can be to win an
individual match.

Medium-range goals are good-sized steps toward the long-term goal. For the strategy
game, perhaps it’s establishing a home base. For the RPG, perhaps it’s the completion of
a simple quest. For the golf game, it can be the battle to win the first hole. Frequently,
these medium-range goals turn out to be embodied in levels.

An immediate goal is the problem that’s right in front of the player. In the strategy game,
it can be figuring out which units to build to fend off an impending attack. In the RPG,
it can be ordering a party before marching into the next battle. In the golf game, it can
be figuring out which club will carry the ball over the water hazard without rolling it into
the bunker on the far side of the green.

Throughout the game, as the player wrestles with the problem in front of him, he should
always have some idea of how this single step fits into the longer path that will eventu-
ally lead to success.

Grounding the Player 19

Figure 2.1 This map of Raymond Feist’s Krondor helps keep
the player oriented toward his goals. Used with permission of
Sierra On-Line Inc.

02 GameDesign2_CH02 8/26/04 10:37 AM Page 19

The Moment-to-Moment Experience
At any instant while he’s playing the game, the player has the option to turn it off and do
something else. You can’t let that happen. You have to hold his attention constantly and
entertain him from moment to moment.

This is far more important than most designers realize. At every point in the game, the
player should have something interesting to do. One of the worst things you can do to a
player is to bore him.

Verbs
The positive side of creating a good moment-to-moment experience is giving the player
a constant stream of interesting choices that have significant outcomes.

It’s useful to think of the things the player can do as “verbs.” In early shooters, the player
had two main verbs: move and shoot. He also had some adverbs: move slowly (walk),
move quickly (run), shoot quickly (machine gun), shoot accurately (sniper). As the genre
expanded, it was primarily through the addition of more verbs, which allowed players to
do new and interesting things: climb, rappel, zip-wire, set explosives, unlock, move stealth-
ily, etc. In essence, every time you give the player an inventory item, you’re giving him
another new verb.

Each genre uses verbs. In an RTS, the player builds, researches, surveys the terrain, gives
orders, etc. In an RPG, he moves, talks, fights, buys, sells, etc.

No matter what the genre, the more verbs you can give a player, the more you allow him
to do. It’s the doing that’s at the heart of good gameplay and a positive moment-to-
moment experience.

Hazards
The hazards that will destroy a good moment-to-moment experience are easy to design
around, once you’re aware of them. Here are several experience-killing pitfalls and how
to avoid them.

Don’t make the player perform a complex action twice. In an adventure game, after he
has completed the steps to a puzzle, don’t make him do it again. For example, after he
has figured out the combination to a safe and opened it, don’t make him reenter the
combination. Just give him an Open Safe command to use.

Chapter 2 ■ Principles of Game Design20

02 GameDesign2_CH02 8/26/04 10:37 AM Page 20

In an action game, don’t make him travel back and forth across the world for frivolous
reasons. Today’s games have big, beautiful environments, but no matter how pretty the
pictures are, they wear thin after a while. If you have large environments, build in short-
cuts to get from one end of the world to the other, and don’t design the gameflow so that
the player has to constantly backtrack or crisscross your world.

If you have rendered transitions, let the player bypass them by pressing the Esc key or a
button on the controller.

The same principle applies to audio and dialogue trees. Don’t make the player listen to
every line of dialogue over and over to get a bit of information he forgot. Instead, let him
abort each piece of dialogue as it begins, so he can get quickly to the line he wants to hear
and then leave the dialogue altogether.

The same applies to cutscenes. No one wants to sit through the same cutscene over and
over. God gave us the Esc key for a reason. Use it.

Restarting the game can also be tedious for the player. You might have created the most
beautiful introductory movie known to man, but hey—he’s seen it already. Let him
bypass it.

Avoid text or dialogue dumps. Instead, dole out information in bits and pieces. Don’t
make the player sit through long, boring screeds.

In general, have the computer do set-up tasks the player might find boring. In an RPG,
for example, allow the gamer to have the computer generate his character and party
automatically. In a racing game, give him a default car that will perform acceptably with-
out having to be tweaked. In a basketball game, don’t make him select each player on
each team before he can begin a game.

Make the game entertaining, moment to moment, by keeping it interesting. Give the
player a lot to do—but also make sure that what he does is fun.

Immersion
Immersion is what happens when you make the moment-to-moment experience so
compelling that the player is drawn completely into the game and the real world disap-
pears. It isn’t until he hears birds chirping that he realizes he’s spent the whole night play-
ing the game (again!). This can be as true of chess games as it is of action games.

The Moment-to-Moment Experience 21

02 GameDesign2_CH02 8/26/04 10:37 AM Page 21

John Gardner, in The Art of Fiction, writes that a good book creates “a continuous dream”
that’s bolstered by providing a constant stream of concrete detail. Immersion works the
same way. You bathe the player in a constant stream of images that pull him into your
world, and you avoid gaffes that jar him out of his reverie. If you break the dream, you
lose the immersion.

These gaffes can be anything from typos to bad voice acting. Modern slang in a medieval
world will destroy the player’s suspension of disbelief in a heartbeat, as will graphical
styles that change from scene to scene, or stupid AIs.

A successful game entices the player into the gameworld, and then never lets him go.

Writing
Good writing is invisible. Bad writing draws attention to itself and instantly destroys the
player’s sense of immersion.

Every game uses words somewhere. The player might see them as text on the screen or
hear them as spoken dialogue. The writing can be confined to cutscenes between levels,
or it can be an integral part of gameplay. Regardless, you can be sure that at some point,
someone will be sitting down with pen in hand (keyboard on lap?) to put words into
your game.

It turns out, though, that writing well is hard. People spend a lifetime learning how to do
it. If you’ve never given writing much thought before—don’t write.

This doesn’t mean that you can’t be a good game designer. It just means that if you’ve
never studied writing, if you’ve never struggled to learn the difference between good
writing and bad, you should bring in someone else to do it.

Design Within Limits
Designers often forget that building a game is actually a software development project.
It has a cost and a schedule, and its ultimate success or failure hinges not just on good
gameplay, but on whether you can deliver that gameplay on time, on budget, with tech-
nical features that work, and without crashing the player’s machine.

The person who makes this happen is the tech lead, and you must work with him to
make his job easier. Even if you’re not a programmer, you should read books about the
software development process and adapt your design to the tech specs and the budget.

Chapter 2 ■ Principles of Game Design22

02 GameDesign2_CH02 8/26/04 10:37 AM Page 22

As a designer, you must limit yourself to features that can be implemented on the target
machine, so you don’t find out at the end of the project that the game runs like a dog.

Removing Impediments
Another way to enhance the moment-to-moment experience is to remove technical
impediments to the player’s enjoyment, such as excessive disc swapping, long load times,
game interruptions, limited saves, bugs, a poor interface, and so on.

You might think of these as technical problems, not design issues, but they’re areas where
programming and design meet. The practitioners of both areas have to work together to
create an enjoyable game for the player.

Disc Swapping
If you design a multiple-disc game with a huge world and give the player complete access
to the entire world at any time, it will result in annoying disc swaps. If he shuttles back
and forth between two locations that have graphics and sound on different discs, he’ll be
faced with the onerous task of swapping discs every time he crosses the boundary.

One solution to that problem is to dump everything onto the player’s hard drive, but this
creates a huge footprint that will drive your sales and marketing people crazy. The sys-
tem requirements will go up, thereby driving sales down.

The better solution is to design choke points in the game. These are points beyond which
the player can’t go back, other than by restoring a saved game. This allows the program-
mers to organize the game’s data on successive discs, put fewer core assets on the hard
drive, and eliminate the need for the player to swap discs continually.

By doing this, you give up a theoretical design advantage (total freedom for the player to
go anywhere at any time) in favor of a practical gameplay advantage (gameplay uninter-
rupted by annoying disc swaps).

Load Times
Another potential impediment is long load times. This, too, is something you can
address in your design. If you suspect that load times will be an issue (your tech lead
should be able to give you a good feel for this), perhaps you should alter your design to
allow smaller levels. Or you can designate points along the way where you pause the
game for just a second or two for a quick load. This is a technique that Half-Life has used
with much success.

Removing Impediments 23

02 GameDesign2_CH02 8/26/04 10:37 AM Page 23

Game Interruptions
In every game there are breaks in the action. Perhaps the player has come to the end of
a level. Perhaps his character has died or otherwise hit a failure condition. Regardless of
what causes the break, try to keep him involved. If he fails, don’t kick him all the way
back to the opening screen. Instead, as quickly as you can, cycle him back to a point just
before the failure and let him try again. Always give him the sense that just one more try
will bring success. Make it hard for him to give up. If he masters a level, tease him right
away with the challenge of the next one. Always have another goal waiting just around
the corner.

Saving the Game
It’s astonishing that games are still being designed that allow no saves (or only one save
at a time), or that let you save only at infrequent junctures, such as between levels.

This is horrible. It condemns people to replaying sections of the game they’ve already
completed, which is a huge disincentive for them to pick up the game again when they’ve
been interrupted.

In a PC game, you simply must allow the player to save his game whenever he wants,
wherever he wants, and as many times as he wants. You should also let him name the save
files whatever he wants. In a console game, where the size of the memory card is
restricted, you should still try to give him as many save slots as you can, allow him to
name them, and let him save as often as he wants.

Autosave, undo, and autorestore-on-death are all nice features, but they don’t make up
for preventing the player from saving the game when he wants to. This is a design
requirement you must communicate to your tech lead at the very start of the project, so
he can design the game’s architecture around it. Mentioning it to him halfway through
development might be too late.

Housekeeping
There are a few activities that the player should be able to perform at virtually any point
in the game. If you handle these activities gracefully, no one will notice, but players will
subconsciously appreciate it. If you handle them poorly, everyone will notice and they’ll
complain.

The player should be able to pause at any point. The phone rings, he has to go to the
bathroom, the boss walks by. . . . There are any number of reasons why he might need to
suspend your game world temporarily in favor of the real world.

Chapter 2 ■ Principles of Game Design24

02 GameDesign2_CH02 8/26/04 10:37 AM Page 24

It should be easy for the player to quit. (Mechanically easy, that is—psychologically, you
want to make it as hard as possible for him to leave the game.) It’s very frustrating to fin-
ish a session of gaming and not be able to clear the game off the screen.

The player should be able to save/load whenever he wants (see the preceding section).

The player should have easy access to the options screen so that he can customize the
game controls and settings.

Help should be available to the player at all times. The initial help screen should be easy
for the player to bring up, and the subsequent screens should answer as many of the
player’s questions as possible. You should tell the player how to save and load the game,
how to customize the game by going to the Options menu, where to find additional
information, and so on.

Bugs
Nothing knocks a player out of a game like a bug. Many designers think that bugs are the
exclusive domain of programmers. Not so. There are many ways you can help keep the
game bug-free.

Be clear in your design documents. If you’re unclear and the programmers do things the
wrong way, they’ll have to go back and do it again. This reduces the amount of time they
have to address other problems, and vestiges of the incorrect way are certain to remain
and will be hard to stamp out. The more you can get it right the first time, the more they
can too.

Be flexible in creating your design. Consult with your tech lead and listen to his advice.
If he says of a particular feature, “It will be hard to code and buggy as hell,” believe him.
Perhaps there’s some other way to accomplish what you want. Stay involved throughout
the whole development cycle. You can’t create a design document and walk away.

A bug doesn’t have to be a crash. It can be anything that deviates from what you
intended: a weapon that’s too powerful, a line of dialogue that’s spoken in jest but that
you meant to be taken seriously, or an inappropriate lighting scheme that creates the
wrong mood for a room. The earlier you catch these problems in the development cycle,
the easier they are to fix. The later you discover them, the more likely they are to remain
in the game.

Keep a level head. As the game comes down to its final days in development, everyone’s
life revolves around managing the bug list. Deciding what gets fixed and what doesn’t is
the joint responsibility of the test lead, the tech lead, the producer, and the designer.

Removing Impediments 25

02 GameDesign2_CH02 8/26/04 10:37 AM Page 25

When everyone is working 20-hour days in a superheated atmosphere, it’s easy for prob-
lems to be blown out of proportion, arguments to erupt, and friendships to shatter. At
this stage, you must distinguish between problems that are a matter of taste and prob-
lems that will actually hurt the game. Yield on the former. Stand firm on the latter.
Remember that yours is not the only voice in the room, and try very hard to check your
emotions at the door.

Interface Design
Creating a good-looking yet functional interface is one of the most underrated tasks of
game design—but it’s vital to get it right. You must decide what the game looks like on
the screen, how information is passed along to the player, and how the player uses the
controller or keyboard/mouse to input commands.

Influential game designer Brian Moriarty tells us a game interface should be “desperately
simple.” (And anyone who has met Brian will recognize the passion he puts behind the
word “desperately.”) Designer Noah Falstein refines this idea by quoting Albert Einstein:
“Make things as simple as possible, but no simpler.” Noah’s point is to keep paring away
elements of the interface until it’s as simple as possible, but don’t go so far in the name
of simplicity that you remove something the player needs to play the game easily.

Vital information must always be easy to find (see Figure 2.2). The player should be able
to understand what’s going on at a glance. For some games, this means creating a HUD
(heads-up display) that overlays information on the action screen. For others, it might be
best to display status information and control buttons in a wrapper around a smaller
active area. For still others, the information doesn’t have to be visible at all, as long as the
player can bring it up quickly.

The controls must be clear. The actions that the player takes most often should be phys-
ically easy for him to perform using the controller or keyboard/mouse. You must hone
these inputs to a minimum number of nonawkward clicks, keypresses, or button pushes.

In his excellent book, The Design of Everyday Things, Donald A. Norman insists that the
physical appearance of an object must tell us how it works. In a sentence that’s directly
applicable to game interfaces, he writes, “Design must convey the essence of a device’s
operation; the way it works, the possible actions that can be taken, and, through feed-
back, just what it is doing at any particular moment.” He also goes on to emphasize the
importance of constraints: “The surest way to make something easy to use . . . is make
it impossible to do otherwise—to constrain the choices.”

Chapter 2 ■ Principles of Game Design26

02 GameDesign2_CH02 8/26/04 10:37 AM Page 26

You cannot rely on your instincts to get this right. You have to try out the interface, first
with team members and later with testers. What’s intuitive to you can be awkward to
someone else.

Pay attention to the conventions of your genre, and use them to your advantage. Don’t
try to reinvent the wheel. If there’s an established way to play the kind of game you’re
designing, and you like it, and it works, don’t change it!

Elegance and ease of use are more important than increased functionality. Achieving this
compromise is never easy, however. Frequently, the team will argue about it for months.
If including a nonvital feature comes at the cost of messing up the interface, you’re bet-
ter off without it.

Prototype the interface early, and keep noodling with it. Usually, there are several inter-
faces within a game. Look at all of them. Get people to test them early, and listen to their
feedback. Most importantly, play your own game. If the start-up menu annoys you, it will

Interface Design 27

Figure 2.2 The interface of The Sims is clear and easy to use.
© 2000 Electronic Arts Inc. All rights reserved.

02 GameDesign2_CH02 8/26/04 10:37 AM Page 27

annoy others. If the options menu is clunky, you’ll be the first to know about it. If sav-
ing and loading is awkward and drives you nuts, you should fix it before a customer ever
sees it.

You need to come back to this over and over again throughout the development process.
The game must be easy to play. The player should not have to fight the interface. The
whole point is to let the player do things quickly and simply. If the interface looks
good and its theme is well integrated into the game, you get plus points. If making a
“cool” interface confuses the player or makes it harder for him to play the game, it’s not
worth it.

One day, voice recognition and speech synthesis may revolutionize the way we interact
with our games. But until then, the whole point of the interface is to let the player do
what he wants without having to think about it. After a while, his fingers should move
unconsciously on the controller or keyboard/mouse so that he’s thinking only about
doing it, rather than how to do it.

The Start-Up Screen
When the game boots, you have no way of knowing anything about the person sitting at
the controls. Is he a complete novice for whom this is the first videogame ever? Is he an
expert in the genre who can’t wait to get to the tough stuff? Is he the gamer’s roommate,
who’s only on the first level while his roommate is halfway through? Is he the proud but
battered gamer who’s firing it up for the zillionth time, hoping to finally defeat that last
level?

You must design a start-up sequence that will accommodate all these users.

Your start-up screen should give the player the option of

■ Going right into the game for the first time (“new game”)

■ Loading a saved game

■ Going to the tutorial or practice area

■ Opening the options menu to tweak features

■ Replaying the opening movie (just in case he bypassed it unintentionally in a
frenzy of button-pushing while trying to make the game load faster)

If you have an opening movie, let the player bypass it with a keystroke or button-click.

Chapter 2 ■ Principles of Game Design28

02 GameDesign2_CH02 8/26/04 10:37 AM Page 28

Customizable Controls
Give the player as much control over the interface as possible. Make everything as
adjustable as you can. This includes game controls, monitor settings, volume . . . every-
thing. Give him the best default settings you can arrive at, but then let him change what-
ever he wants.

Different things are important to different players. One player might want to optimize
for speed instead of graphics, because he’s an action addict. Another might prefer a
higher resolution, even though it slows down the game, because he likes to look at the
pictures. A third might want to remap the commands to different buttons or keys,
because that’s what he’s used to. Whenever possible, let the player customize the game to
his liking.

On the options screen, explain what each option does (see Figure 2.3). Don’t assume that
the player knows what gamma intensity or mouse inversion is. Explain each feature or
setting, and tell him how changing it will affect the game.

Customizable Controls 29

Figure 2.3 The highlighted option on this screen from Unreal is
explained at the bottom of the screen so the player knows what it does.
Used with permission of Epic Games Inc.

02 GameDesign2_CH02 8/26/04 10:37 AM Page 29

Cheat Codes
Include as many cheat codes as you can, while acknowledging that they break the play-
balancing rules.

Entire third-grade classes are playing Age of Empires. Do they play by the rules? No, but
those nine-year-olds are enjoying the game anyway. Not only that, but every one of them
made his parents buy him a copy, and many of them will continue buying games in the
future. This is a good thing for game designers everywhere.

In other words, let the player decide what’s fun for himself. If he wants to get the biggest
monster weapon there is and go around flattening everyone else with no challenge at all,
let him. In an action game, include god mode and the cheats to get all the weapons or
walk through walls. In an adventure game, give him the cheats to get around puzzles.

These cheats need to be tested, however. The more hierarchical the game (especially
something like an adventure game), the more the game designer depends on the player
having followed a certain path to get to where he is. If you let him jump there directly
via a cheat, make sure that the cheat simultaneously sets all the game parameters as if he
arrived there legitimately, especially in terms of objects in his inventory and flags set in
the environment.

If you can’t preserve the design integrity of the game while allowing the player to cheat,
let him do it anyway, but make sure that he knows he’s breaking the rules. You need to
let customer support know about this, however. They’re sure to get calls from confused
gamers who’ve used the cheat codes and can’t figure out why the game isn’t behaving the
way it should. (Even though you warned them!)

Tutorial or Practice Mode
Some players like to jump right into a game. Others need a chance to get their feet wet
in a nonthreatening atmosphere.

A tutorial gives the player hands-on experience without endangering him. A good exam-
ple of this is Lara Croft’s house in the original Tomb Raider, where the player is slowly
introduced to the running, jumping, and climbing skills he’ll need later in the game. If
he fails at any one stage, he can simply try again. Even if he succeeds, he can go back and
do it again to become more comfortable or to learn the limits of the move.

The Tomb Raider tutorial is especially good because, in addition to teaching those skills,
it also introduces the player to the character and the world. Thus, he’s hooked from
the start.

Chapter 2 ■ Principles of Game Design30

02 GameDesign2_CH02 8/26/04 10:37 AM Page 30

You cannot assume that the player will actually play the tutorial, however. (You also can’t
assume that he’s read the manual. Many people just slam the game disc in and start it
right up.) This presents difficulties if he must learn a certain skill in order to advance,
but he hasn’t gone to the right place to learn it. Probably the best way around this is to
have some other character show him this skill, or tell him that there’s something he
clearly hasn’t learned and that he should go back to basic training (or whatever it’s called
in the game) in order to pick it up.

Structure and Progression
“A game should be easy to learn, but difficult to master.”

It’s the cliché you hear most often about game design.

It’s true.

It’s true for arcade games, where the entire design philosophy is built on getting players
hooked quickly and then escalating the challenges just enough to continue sucking quar-
ters out of their pockets. It’s true for board games. It’s true for console games, where you
have young kids who pick up the controller and drop it in a second if they can’t figure
out how to play the game. It’s true for PC games, where busy people want to get into the
game experience as quickly as possible without a steep learning curve.

Easy to learn, difficult to master. Anyone can sit down at Quake and start shooting
things. As he gains more experience, he realizes that if he stands in one place, he’ll get
killed, so he learns to start moving while shooting. Then he learns to circle-strafe. Then
to shoot while running backwards. Then to figure out which weapons are better up close
or far away. Then he learns to rocket jump. As he progresses, he learns the characteristics
of each weapon. He learns to “lead” his opponent. Anyone can pick up Quake and start
having a good time within minutes, yet the longer he spends mastering the game, the
more enjoyable it becomes.

In an adventure game, you should make the first puzzles easy. In an action game, make
the first opponents fall over when the player even looks at them. In a fighting game, give
the player some easy attacks that are effective right away. In a racing game, make the con-
trols easy enough that the player can get out onto the track and start moving around.
Save the esoteric adjustments for later, or at least don’t require the novice to customize
his car before he’s ready to do so.

“Let the game begin” should be your motto. The first few minutes of a game are like the
first moments of a movie. They’re supposed to grab the audience. If you don’t get a player
involved in your game within the first 15 minutes, you’ve probably lost him forever.

Structure and Progression 31

02 GameDesign2_CH02 8/26/04 10:37 AM Page 31

Later, after the player has figured out the basic gameplay mechanics, it’s time to raise the
ante. If the intermediate levels are too easy, people will lose interest in the game almost
as quickly as they do if the first levels are too hard.

As the player advances through the game, slowly introduce the intricacies you’ve built
into it. If he must acquire a special skill to defeat the boss monster late in the game, give
him some lesser creatures to practice on in the intermediate levels. If a puzzle calls for
an intuitive leap, scatter examples of that kind of leap elsewhere before the player
encounters that puzzle.

The final levels should be the hardest of all. You must find that delicate balance between
the challenging and the impossible. A game that’s too hard is no fun. A game that’s too
easy is no fun either (except to the very young). People don’t want to play a game they
have no chance of winning, nor do they want to play a game that’s so easy there’s no chal-
lenge to it. The trick is to design something in-between. Something that frustrates the
player just enough that he enjoys it.

This sense of gradually acquiring mastery over a game is a pleasure that cannot be had
in traditional media. (One doesn’t get better at watching TV, for example.) The feeling is
more like learning a sport—increased skill brings increased pleasure. What you must do
is design a game where the better the player plays, the more he wants to play it.

Throughout the process, you must listen to your testers. Remember that you’re one of
the most skilled people who will play your game. You know its ins and outs, its strengths
and weaknesses, its guts. A level or puzzle you think is ridiculously easy can prove impos-
sible to others. By cycling fresh testers onto the game, you get feedback that’s impossible
to obtain from more jaded testers who’ve played the game as much as or more than you.
You need both kinds of testing to make the game successful.

Taking Care of the Player
You’re not the player’s adversary. Your job is to help him enjoy the game you’ve created.
It’s easy to lose sight of this, especially when so many of your tasks involve challenging
the player and finding that delicate balance between frustration and pleasure. Remem-
ber, though, that you’re not in competition with him. Although his goal may be to beat
the game, your goal is not to beat him.

One of the biggest mistakes young designers make is trying to prove that they’re smarter
than the player. There’s no point to this, and it would be an unfair fight anyway, because
you hold all the cards. Anyone can design a puzzle based on obscure knowledge or cre-
ate a path that’s almost impossible to traverse. The skill comes in creating problems that

Chapter 2 ■ Principles of Game Design32

02 GameDesign2_CH02 8/26/04 10:37 AM Page 32

are just challenging enough, and in confining the player’s frustration to the problem at
hand, rather than making the playing of the game itself a challenge.

A good designer tries to help players get through the game, take care of them along the
way, and protect them from time-wasting traps and pitfalls that take the fun right out of
the whole thing.

Dead Man Walking
Don’t put your player in a position where he can’t win and doesn’t know it. This is a
familiar problem in adventure game design, but the phenomenon is now creeping into
action games.

Let’s suppose that in the fourth level of a game, the player needs some special goggles to
spot the laser beams crisscrossing a narrow hallway. The designer put the goggles behind
a crate on level 2, but the player didn’t see them because it was dark back there. He went
merrily on his way through level 3 and halfway through level 4, unaware that he missed
something. Now he runs into this laser beam problem. He does everything he can to get
around it. He becomes frustrated. He finally buys the strategy guide and learns for the
first time that a) There’s equipment he’s missed, b) He’s going to have to go back and get
it, and, worst of all, c) He’s been a “dead man walking” since the middle of level 2, and
the last several hours of gameplay have been wasted.

What’s the mindset of the player? He might decide that it’s not worth it to go back and play
through the game again. Even if he does continue, from there on out, he’s going to play
with one eye on the strategy guide, never trusting the designer to do the right thing again.

Instead, you want the player to trust you, to believe at any given moment that if he does
the right thing, he can somehow win.

Protect Newbies
When the game begins, take it easy on the player. Ease him in until he acquires some con-
fidence. Nothing is worse than to be a newbie in an online game and have some experi-
enced player come along and kill you. Nothing is worse in a first-person shooter than to
have the first set of opponents kill you over and over, while you struggle just to move
around and can’t figure out why you’re always staring at the ceiling. Nothing is worse in
an adventure game than a first puzzle that’s so hard that you’re made to feel like an idiot.

All these problems have design solutions. Devise a punishment for experienced players
who kill newbies, or cordon off an area of the game where new players can fumble
around safely. Make the first opponents easy. Make the first puzzle even easier.

Taking Care of the Player 33

02 GameDesign2_CH02 8/26/04 10:37 AM Page 33

Play It Again, Sam
Have you ever played a game where you come to a long, tricky sequence of moves that
you have to get just right? And every time you get one move wrong, you die and have to
go back and do the whole thing again? Often, entire levels have to be played this way. No
matter how close the player is to completion, one false step sends him back to start over.

A special section of Hell should be reserved for game designers who do this. These same
designers probably think that Sisyphus clapped his hands with glee every time his rock
rolled back down to the bottom of the hill.

It needs to be stated once and for all, unequivocally, with no room for doubt:

This is not fun.

As the player repeats the sequence, pushing one step deeper into it each time, he comes
to resent it, as well he should. He’s demonstrated his ability to complete the early steps—
why should he be condemned to repeat them? Why should he spend his time doing
the same thing over and over again? What’s new and exciting about that? Where’s the
entertainment?

Nothing makes a player want to fling down the controller and put his fist through the
screen like dying for the hundredth time near the end of one of these sequences and hav-
ing to go back and do the whole damn thing again! Nobody gains anything by this tor-
ture.

This problem has many solutions. The simplest is to allow the player to save the game at
any point. That way he never has to return to the very start, but can pick up from just
before he was killed.

Another solution is to code in checkpoints along the way. If the player dies, quickly cycle
him back to the last checkpoint so that he can have another go at it.

The best solution is to avoid designing one of these sequences in the first place.

Give the Player the Information He Needs
All the knowledge a player needs in order to play a game should be included within that
game. You cannot expect him to rely on strategy guides, Web sites, or word of mouth to
pick up critical information. Whenever possible, the information should be on the disc
itself, rather than in the manual. However, some games (especially simulations) are so
complex that a beefy manual cannot be avoided.

Many games have undocumented features, special moves or tricks that aren’t mentioned
anywhere in the manual. These frills can be fun, but you must make sure they aren’t
essential to the completion of the game, because not everyone will discover them.

Chapter 2 ■ Principles of Game Design34

02 GameDesign2_CH02 8/26/04 10:37 AM Page 34

It’s also a tricky problem for a designer to figure out what “everyone knows.” It used to
be that gamers were computer hobbyists with a scientific or mechanical bent, and you
could rely on them to have a certain body of common knowledge. You could make jokes
based on pop-culture references and devise puzzles using the order of colors in the spec-
trum. Now the person playing your game could be a teenager in Italy or a grandmother
in Sweden. You can’t be sure what these people know. So if your gameplay relies on spe-
cialized knowledge, you must make that knowledge available to the player.

Reduce Player Paranoia
Players spend much of a game worrying that they’re doing the wrong thing. You need to
reassure them when they’re doing okay. Give them small, incremental rewards as they
make progress toward their goals. Gently steer them in the right direction, and let them
know when they’re straying from the path.

Offer Levels of Difficulty
Another way of taking care of the player is to include different levels of difficulty in your
game. These usually come in three flavors—novice, intermediate, and expert. In an
action game, for example, the novice level has fewer opponents, who die more easily and
might not have the smartest AI. At the intermediate level, you can provide less ammuni-
tion for the weapons you give the player, or make the player’s health packs less powerful.
At the expert level, there are many opponents with good AI, sparse ammunition, and
perhaps no armor or health kits.

Similar gradations can be made in other genres. Driving games can vary the perfor-
mance of the other cars, adventure games can scatter more clues to the puzzles, and
sports games can demand greater or lesser adherence to the rules. In every case, you’re
allowing the player to choose the degree of challenge that will provide the most enjoy-
ment for him.

How to Design
With all these principles in mind, how do you actually go about designing your game?

Create an Integrated Whole
Game design doesn’t have to be as hard as people make it out to be. Once you have an
original inspiration (the high concept), a lot of the design process is mere logic. If you’ve
settled on the central nugget around which the game revolves, a lot of design comes
down to iteratively answering this question: “For this interesting thing to be true, what
else has to be true?”

How to Design 35

02 GameDesign2_CH02 8/26/04 10:37 AM Page 35

As you answer this question over and over, your world slowly grows into an integrated
whole. “If we’re doing a farming simulation, we’re going to need tools. How does the
player use these tools? What do they look like on the screen? How does the player select
them? How does he manipulate them? What does he see after he’s used them?” And
so on.

Economy of Design
Good design in any field is distinguished by simplicity (see Figure 2.4). A good designer
includes only those things that are necessary to create the effect he desires. Anything else
is superfluous and detracts from the overall goal.

In game development, economy of design also helps your schedule and budget. If you
know exactly what you want to build, you won’t waste time and money creating mater-
ial that ends up on the cutting room floor.

The high concept is also useful in this regard. While a project is in development, features
will pop up that the team wants to implement. You can’t do everything, so how do you
decide what to put in and what to leave out? One very good benchmark is to assess the
proposed feature against the high concept. If it doesn’t help you achieve the game’s basic
goal, leave it out.

The best games aren’t big and sprawling; they’re tight and focused. They don’t distract
the player with irrelevancies.

Chapter 2 ■ Principles of Game Design36

Figure 2.4 The Barcelona
Chair, designed by Mies van der
Rohe (originator of the phrase
“Less is more”).

02 GameDesign2_CH02 8/26/04 10:37 AM Page 36

Where Do You Get Your Ideas?
This is the question most frequently asked of writers and game designers. The answer is
that if you’re designing something of interest to you, the ideas will come naturally. This
was mentioned in the preceding chapter, but it bears repeating. The game should be
about something you’re interested in, and it should be in a genre you’re familiar with.

However, even though one person might set the game design in motion, there must still
be a balance between his ideas and those of the rest of the team. Every game needs a
“vision guy”—the person who holds the central idea in his head and evaluates all pro-
posals and suggestions against that idea. In some cases, it’s not even the game designer
who fills this role, but the project leader or the producer.

One of the major tenets of this book is that no one person can come up with all the cre-
ativity necessary to make a game successful. Game design is a collaborative art, and you
need contributions from all the disciplines, including story, art, programming, game-
play, sound, music—even sales and marketing. Everyone involved in the production of
the game has a claim on the design, and the design process must be flexible enough to
include each person’s contributions.

Some endorse the cabal approach. This method sets up highly focused teams, each of
which addresses one specific area. Each group usually includes one member from each
of the areas of production (programmer, artist, level designer, tester, and so on). They
have a series of meetings and are empowered to make decisions on behalf of the entire
team.

A less formal approach to group design is brainstorming. In The Art of Innovation,
Tom Kelley writes about the success of IDEO, a Silicon Valley product development firm.
“The best way to get a good idea,” Kelley writes, “is to get lots of ideas.” A brainstorming
session gathers team members in an open discussion that generally follows established
rules. No ideas are labeled good or bad; they’re merely recorded. No decisions are
made during the meeting; the group tries to get a flow going, and they record the session
without interfering with it. For example, they might photograph the whiteboard as they
go along.

Keep the size of your brainstorming group small, preferably fewer than seven people.
Larger groups tend to ramble and are less productive. Small groups stay more focused,
kicking around many variations of one idea before moving on to the next.

When a brainstorming session is over, the designer is free to mull over the ideas, accept-
ing some and rejecting others. This system takes advantage of the creativity of the entire
team, but relies on the vision guy to keep the focus.

How to Design 37

02 GameDesign2_CH02 8/26/04 10:37 AM Page 37

Finally, don’t talk about your ideas too soon. A small flame can easily be extinguished by
a puff of wind. If it grows into a fire, the stronger the wind, the more fiercely it burns.
When an idea is born, it can easily be extinguished by a single puff of derision. After it’s
established, though, conversational buffeting only makes it stronger, requiring it to
adapt, change, and grow. When you get an idea, nurture it along before exposing it to the
winds of discussion. When the spark becomes a fire, bring it out for others to see, and
then you’ll discover whether it’s strong enough to survive.

Chapter 2 ■ Principles of Game Design38

02 GameDesign2_CH02 8/26/04 10:37 AM Page 38

