
41

Engineering the Engine

chapter 3

What you get if you don’t get what you want is experience.

Desire Nick

You are probably tired of listening to design issues and general game program-
ming and engine programming topics. If you think like me then you want to
finally get down to work on some code. If so, this is the chapter for you. From

now on, you will develop the ZFXEngine step-by-step, chapter-by-chapter. Don’t worry.
I will guide you.

This chapter covers the following objectives:

■ Creating static and dynamic linked libraries (DLLs)

■ Using Windows dialogs to interact with programs

■ Developing a renderer for the ZFXEngine as a static library

■ Initializing and cranking up Direct3D using a custom DLL

■ Writing a framework program using the ZFXEngine

What Is an Interface?
An interface is a pretty smart concept related to the design of code. Note that we are talking
about interfaces in object-oriented design here as opposed to user interfaces, for example. Just
think about it: the bigger a software project becomes, the more problems arise from multiple
different people screwing around with the code and sometimes screwing it up badly.
Interfaces are just a way of insulating yourself from a particular implementation. In an
object-oriented software engineering world, big projects should be made up of separate code

CH03_p.041-090.qxd 6/1/04 2:39 PM Page 41

objects that are reusable whenever possible and that are independent from your colleagues’
work. However, how would you prevent a hard-core coder from changing the object’s imple-
mentation, forcing you to rewrite the code that is related to this object?

An interface protects your work from this type of hard-core programmer. Interfaces are a
concept independent of any particular language. Generally speaking, an interface sits
between two objects or persons, and its task is to provide a means of communication
between them. Using C++ you can define a class as an interface that uses a bunch of
abstract methods. You might ask how this helps you to organize software projects.

It’s actually fairly easy. Let’s suppose your super-coder colleague has to implement an
object A, and it’s your job to implement object B that uses some of object A’s public meth-
ods. You can define an interface for object A, and the implementation your colleague plays
with has to inherit from the interface class you both agree on or that was given to you by
the project’s lead programmer. No matter how much the super-coder colleague messes
around in his code, he has to provide only the methods declared in the interface—or risk
being fired, as there is always more than one option.

Finally, you are in a quite secure position. Even if the implementation of object A stalls,
you can do your implementation of object B based on the interface definition; the pro-
gram will work with any and all objects that implement the interface. This is the basic
interchangeability of interfaces. For different platforms you can have different implemen-
tations of the same interface.

N o t e

Basically you can define the layout of a class by just writing a specification document. But using
interfaces is a means of enforcing the specification.

Abstract Classes
There are several ways to create interfaces. The most common way in object-oriented pro-
gramming is to create an interface as a class that has no implementations. In C++, you
create a class that declares only public member functions but provides no implementation
for them. For those of you who have not yet dealt with C++, this might sound new.
However, hang on, it gets even more difficult. The point is that you cannot instance an
object from such a class because the compiler would complain that there is at least one
implementation missing that such an object would need. However, it is not our intention
to get objects from this interface class. Its only purpose is to act as the base class from
which other classes inherit. Then those derived classes provide the implementations pre-
scribed by the interface.

Now for the freaky stuff. Such functions you don’t provide an implementation for are
called pure virtual functions. A C++ class containing at least one pure virtual function is

Chapter 3 ■ Engineering the Engine42

CH03_p.041-090.qxd 6/1/04 2:39 PM Page 42

called an abstract class because you can’t create instances of this class. Finally, such an
abstract class is what we call an interface. So there is one more new thing to learn for you
C coders who have avoided C++ until now. How do I declare a pure virtual function, and
what is virtual supposed to mean?

Virtual Member Functions
Actually, from a coder’s point of view it’s pretty easy. You just have to use the C++ key-
word virtual while declaring the function. I don’t want to dive too deeply into C++ right
now, but at least you should know the meaning of this keyword. To keep it simple, let me
put it this way: If a class inherits from another class, it can declare and implement mem-
ber functions featuring the same name as functions in the class they are derived from.
Normally, an object would call the function from the base class if the derived class does
not declare a function with the same name even if the object is of the derived class’s type.
However, if it does declare the same function, you can quickly mess up the code. Because
with normal, non-virtual functions, the type of the pointer to your object, rather than the
type of the object, is used to decide which function to call.

This means you can cast the pointer to your object of the derived class and use a pointer
of the base class type instead. This way, your code would call the base class’s function,
which is normally not what you want. By declaring the function as virtual, it is now the
type of the object that determines which implementation to call and not the type of the
pointer you use to access the object. Take a look at the following line of code, which shows
a sample of an abstract class:

class CMyClass
{
public:

virtual void MyPureVirtualFunction(void) = 0;
};

This is as simple as it looks. The =0 in the function declaration is the part responsible for
making the function pure virtual: it tells the compiler that there must not be an imple-
mentation for this function in this class. Furthermore it forces each non-abstract class
deriving from this base class to provide an implementation for this function. Otherwise
the code could not be compiled. Guess what? You have now mastered what you need to
know about declaring pure virtual functions and creating abstract classes.

Defining the Interface
You should have a quite good understanding of why a big software project needs inter-
faces and what their benefits are. And as you already might suppose, I designed the
ZFXEngine to use interfaces. This engine is not a very big project, but it is larger than
what you would call a small one. My goal in designing the engine is simply to prevent

Defining the Interface 43

CH03_p.041-090.qxd 6/1/04 2:39 PM Page 43

API-dependency, as discussed previously. I will define an interface that exposes all func-
tionalities that output graphics to the screen using the engine. After that, I will derive a
class from this interface and implement the functions using Direct3D. Note that you can
also derive a class of your own and implement the functions using OpenGL. Finally, I will
put the implementation into a dynamic link library (DLL).

N o t e

Normally your compiler compiles your code into object files, which are then linked together to a
program executable file by the linker. However, you can also link those object files together to a sta-
tic library, which is in turn linked by any program that uses this library. If you link your object files
as DLLs, each program using the library is not linked to it, but needs to load it at runtime.

About DLLs
The big advantage of DLLs should be clear. You can write a bunch of programs using the
engine’s interface, and you only need to load my implementation of the interface featur-
ing Direct3D. Okay, okay. You can also load your own implementation featuring OpenGL
or a software renderer. The point is that you can load the DLL at runtime. There is no need
to recompile your code each time you make changes in the implementation of the engine
because your code that uses the engine does not use the derived class in the DLL. The
implementation is used via the interface. As long as the interface does not change, you can
change whatever you want inside the DLL and provide the newly compiled version of it
to your software project. You could even unload the old version during runtime and load
the new one. If a new DirectX or OpenGL version comes along, you won’t have a prob-
lem. You just need to rewrite your interface implementation inside the library and dis-
tribute the new library to your engine users. They don’t need to rebuild their programs to
use the new version. It is just used. This process is opposed to that with static libraries,
which are effectively copied right into the executable file during the compilation and link-
ing of your project.

T i p

On Linux systems, there are also libraries loaded at runtime just like DLLs on Windows systems.
However, Linux folks call these shared objects (.so).

You can also use this technique for every component in your engine. You can have a DLL
for the audio component featuring sound effects and music, you can encapsulate your
input system in a DLL, and so on. Can you see where this path leads us? We will rebuild a
system similar to DirectX itself, but in a high-level manner. Actually, this is ultimately
what we do in the course of this book. You can also use other strategies, such as putting
everything into one very big DLL.

Chapter 3 ■ Engineering the Engine44

CH03_p.041-090.qxd 6/1/04 2:39 PM Page 44

Another advantage of using such DLLs is that you can build prototype implementations.
The game programmers or application programmers can have a full working version of
the engine ready to go in a short amount of time. This is not to speak of performance,
however. This version is definitely not very good. However, it will work, so the other
coders can do their job without waiting for you to get the engine on track. When the opti-
mized version of the engine is done, you can hand over the new DLL and it will power the
game or application code immediately without rebuilding the project or making changes
to the code.

More About the Renderer
For the purpose of this book, I implement a DLL for the renderer using only Direct3D. In
Chapters 9–11 I add libraries for audio, input, and network capabilities to the engine. If
you feel more comfortable with OpenGL, you can provide your own implementation in
your own DLL and run the engine using OpenGL for rendering. If you happen to use
Linux, you can create a shared object using OpenGL and also implement the interfaces.

C a u t i o n

Actually, I’m not providing platform-independent code here. I want to keep the code as straight-
forward and simple as possible, so some interface functions use plain Windows structures. With a
careful design, you can come up with an interface that will do the job on both systems.

Also of importance is the fact that the class that inherits from the interface and imple-
ments it cannot provide additional public member functions. Well, it can, but you must
remember that the user of your engine does not see this derived class. The user sees only
the functions declared in the interface because he or she only has a pointer of the inter-
face type, even if that points to an object built from the derived class. There is no way for
the user to access other functions of the object except those from the interface.

Workspace for the Implementations
Fire up the development environment of your choice, preferably Microsoft Visual C++,
and get ready to hack some lines of code. Oh, but wait. A few other issues come to mind
that you might find interesting. We spoke only about loading the DLL at runtime. There
are two ways to do that. If you create a DLL using Visual C++, you will end up with the
.dll file itself and an additional .lib file (a static library). The first way of loading a DLL
is to link to this static library, while the second way is to load the DLL with a specific func-
tion call. The next section shows you how both ways work.

Workspace for the Implementations 45

CH03_p.041-090.qxd 6/1/04 2:39 PM Page 45

Loading DLLs
Huh? What is that static library doing there? Again, it is one way to load the DLL.
However, it comes with the disadvantage that all applications that use your engine need
to link to that static library. Thus, any time you make changes to the DLL code that also
affect this .lib file, you also need to recompile the application’s code using the DLL to
relink the new static library. Such a change is, for example, changing the public interface
of the DLL or any other exported function. That is not good, so we will use the second
way to load a DLL without the accompanying static library. Windows provides a function
you will see in action shortly that can be used to load DLLs. Here is its prototype:

HINSTANCE LoadLibrary(LPCTSTR plLibFileName);

This seems too easy, doesn’t it? If you agree, you are right. It’s never this easy. By linking to
the static library, you tell Windows that you want that DLL automatically loaded at program
startup, and you tell the linker about all the functions contained in the DLL—so that when
you use them like regular functions in your program, it doesn’t complain that it can’t find
them. Without this kind of list, you just don’t know what is inside the DLL. If you use the
Windows function to load the DLL at runtime without the static library, your application is
not able to find the functions or classes inside the DLL.

This way of dynamically loading a DLL would be stupid if there weren’t a way to get
around the obstacles. Indeed there is a workaround. You have to declare the functions you
want the application to access as __declspec(dllexport). The application can then get a
pointer to these functions and can them. There is another way. You can write a def file that
lists the functions inside the DLL that should be exported. Then you have the list of
exported functions in a single place to check, rather than distributed over several header
files, for example. This is the way we will go, so more on this is coming soon.

N o t e

If you use the Windows function to load a DLL at runtime, you will not be able to use the functions
inside the DLL. You first have to use another function called GetProcAddress() to get a pointer
to a function you know the name of.

Exporting Classes from DLLs
There is one final catch. Who said it would be easy? The problem is that there is no easy
way to export a class from a DLL if you load the DLL yourself and don’t use the static
library it came with. I can provide you with an easy solution. First, we will define a class
derived from the interface and implement this class inside the DLL. Then we will write a
function inside the DLL that creates an object of this class, casts this object to the inter-
face type, and returns it to the caller. You might have already guessed that this function is
exported from the DLL. In addition, there is no need to export anything other than this

Chapter 3 ■ Engineering the Engine46

CH03_p.041-090.qxd 6/1/04 2:39 PM Page 46

function from the DLL. The user knows about the interface and he can do everything with
the returned object the interface allows him to do.

ZFXRenderer: A Static Library As Manager
Are you still with me? Now we will implement a static library called ZFXRenderer. The only
purpose of this static library is to do the loading of our DLL. Please note that this is not
the static library that the compiler will auto-generate for our DLL project. I implement
this static library only to take the workload of loading the DLL from the user. You can still
make changes inside the DLL without recompiling.

There is another job the static library needs to do. I will show you how to implement the
renderer using Direct3D. However, to do an OpenGL implementation, you need to decide
somewhere in the program which DLL to load. This task is also done by the ZFXRenderer,
which you will see in action later in this chapter.

You will need to deal with that ZFXRenderer library only two times. First, you need it dur-
ing initialization to create and obtain a render device. You see that I’m trying to adhere to
DirectX naming conventions, so the thing actually sitting in my DLL and doing all that
rendering of things is the ZFXRenderDevice. To finally make the puzzle pieces come
together I will show that the ZFXRenderDevice is actually the abstract class we will use as
the interface for our rendering implementation. The second time you need to deal with
the ZFXRenderer is during the shutdown of the engine. You are required to delete that
object in order to free its allocated resources.

Next, you need to learn how to set up a project in Visual C++. You also need to know
which files to add and what kind of code to hack into those files to make this kind of sys-
tem run. Don’t panic if you feel a bit overwhelmed with the perhaps unfamiliar terms fly-
ing around in your head like slow motion bullets on weird paths. Well, I should not play
Max Payne that often I guess, but I’m somehow connected to Finland, having lived and
studied there for half a year.

N o t e

The description of how to set up the projects in this book is meant to explain how it’s done using
Visual C++ 6.0. If you use a newer version, check your software’s manual. Also note that DirectX 9
no longer supports versions of Visual C++ or Visual Studio older than version 6.0.

Open Visual C++. In the File menu, select the New option. A dialog comes up; select the
Project tab and select Win 32 Library (static) from the list of options. In the field on the
right, enter the name for the project, which is ZFXRenderer. This confirms for Visual C++
that you are done with your settings. (For Visual C++ .NET 2003, select Project from the
New option in the File menu. Chose Visual C++ Projects as Win32 Project, then click OK.

Workspace for the Implementations 47

CH03_p.041-090.qxd 6/1/04 2:39 PM Page 47

Now click on Application Settings, select Static Library, uncheck Precompiled Header, and
finally click on Finish.)

You should now have an empty project space to work in. You can add files to that project
in Visual C++ 6.0 by navigating to the Project menu and selecting the Add to Project
option and the New suboption. In the dialog box that appears, select the File tab. In the
list, you can select either C/C++ Header File or C/C++ Source Code File, depending on
which kind of file you want to add. After that you can name the file that Visual Studio
should create and add for you to the project space. (In Visual C++ 2003, select the Add
New Item option from the File menu, select Visual C++, and select C++ File (.cpp) or
Header File (.h). Then type the name of the file and click on Open.) Now, please add the
following files:

■ ZFXRenderer.cpp

■ ZFXRenderer.h

■ ZFXRenderDevice.h

The first two files will contain the implementation of the class ZFXRenderer. The third file
is used to take the definition of the interface, that is, the abstract class that the implemen-
tation in our DLL will be derived from. Now I will show you how to integrate the abstract
class into the workspace that is open on your screen.

T i p

You can find all the source code on the CD-ROM that comes with this book, so you don’t neces-
sarily have to write all the files from scratch and you don’t even have to set up the workspace and
projects. I think it’s always better to know what is going on and how you can set up a workspace
of your own.

ZFXD3D: A DLL As Render Device
Currently, you have a Visual C++ workspace that contains one project named
ZFXRenderer. Most of you have worked with only one project in one workspace. It is time
to change that. A workspace in Visual C++ can hold more than just one single project.
Otherwise, there is no need to separate the project from the workspace. Add a second pro-
ject to your workspace.

T i p

Since the advent of Visual Studio .NET (7.0 and higher), the workspaces were renamed with a
fancier name. They are called solutions (*.sln) now.

Whenever you have two or more projects that are somehow related, it is a good idea to
keep them all in the same workspace. Chances are that you will work on several of them

Chapter 3 ■ Engineering the Engine48

CH03_p.041-090.qxd 6/1/04 2:39 PM Page 48

in parallel. In one workspace, you can easily change between projects. Ask yourself how
your projects will be related. It is pretty easy. You have one static library acting as a man-
ager that is responsible for loading a DLL that implements the ZFXRenderDevice interface.
In addition to the static library project, you have to add a project into the workspace for
each implementation you will provide for the interface. There needs to be at least one such
implementation, which I will show you in this chapter using Direct3D. If you want to
implement the interface using OpenGL or a software renderer, you need to add another
project to the workspace similar to the ZFXD3D project.

ZFXD3D is the name of the DLL project and also of the class inside this DLL project that
implements the render interface ZFXRenderDevice. To add this project to the workspace, the
steps necessary are quite similar to the ones for adding new components, such as files, to the
workspace. However, for Visual C++ 6.0, instead of choosing files, select the Projects tab.
From the list, select Win 32 Dynamic-Link Library. In the Name field, add a subdirectory
called ZFXD3D and also use the same name for the project itself, such as ZFXD3D/ZFXD3D.
Click the OK button and select that you want a plain, empty project. In Visual C++ 2003,
select the Add Project / New Project option from the File menu, select Visual C++ Projects /
Win32, type in the name (ZFXD3D in this case), and click OK. Then click on Application
Settings, select DLL, check the Empty Project option, and click Finish.

T i p

Using the Active Project option in the Project menu, or from the Context menu, you can decide
which of the projects inside the workspace is to be the active one. This is the one to be compiled
when you hit the Build button and the one where all project-related settings and options are being
used. If you want to add new files, for example, they can be added to the active project in Visual
C++ 6.0. The active project is displayed in bold letters in the workspace treeview, so make sure that
when you compile, add new files, and so on, you have the correct project set as active.

You should now have a second project sitting inside the workspace. This new project
ZFXD3D is still missing files, but you will change that. You know how to add new files to
a project, so take advantage of this knowledge and add the following files to the project:

■ ZFXD3D_init.cpp

■ ZFXD3D_enum.cpp

■ ZFXD3D_main.cpp

■ ZFXD3D.h

■ ZFXD3D.def

I use the first four of these files to implement the class ZFXD3D. As discussed previously, this
class implements the interface ZFXRenderDevice. We have not defined this interface, but
we will come to that soon. The name ZFXD3D gives away the fact that we use Direct3D as
the means of communication with the hardware. This class creates quite a bit of work so

Workspace for the Implementations 49

CH03_p.041-090.qxd 6/1/04 2:39 PM Page 49

we just get started in this chapter. We will revisit the class in Chapter 5, “Materials,
Textures, and Transparency.” I personally don’t like my files to get too long so I put the
implementation of this class into several files to maintain structure in the project. All
functions that are needed to initialize (and shut down for that matter) are defined in the
file with the suffix _init. The enumeration of Direct3D needs a chapter of its own; I put
everything related to that enumeration of available video and buffer modes into a sepa-
rate file with the suffix _enum. This leaves only the file with the suffix _main for all the other
things needed at runtime.

Finally, there is the mysterious file ZFXD3D.def. If you use a DLL, you need to tell the appli-
cation which functions sit inside the DLL and which are meant to be called by an appli-
cation. You can either export those functions directly by using declspec(dllexport) or
you can use a def file containing the names of the exported functions. There is nothing
magical about doing this.

Now that you have set up workspaces and added files to the project you can load a DLL
that implements the render interface. We will discus this in the next section. After that, we
will implement the ZFXD3D dynamic library project that implements the render device
interface.

ZFXRenderDevice: An Abstract Class As Interface
Before you can start to implement anything, you first need to think about the interface.
The interfaces of an engine need to be defined and fixed before anything else can take
place. This is because everything in the engine is connected to these interfaces in some
way. The programmers ordered to implement the interfaces naturally need to know the
complete interface definition before they can get started. Those who write the programs
that will use the interface to render something to the screen will also need the complete
specification of the interfaces to see what they can or cannot perform—and more impor-
tantly, how to perform things with the interface.

All functions using functions from a particular API, such as Direct3D or OpenGL, must
be hidden by interfaces. This way you end up with an engine that is not strictly dependent
on a certain graphics library, and so not dependent on a certain operating system such as
Windows or Linux. I already said that platform-independence is not that easy to achieve.
There are always some things pestering you, starting with opening up a simple window of
an operating system’s specified data types. Therefore, as discussed previously, you must
strive for platform-independence. The code in this book is graphics-API–independent,
although it is still slightly bound to the operating system Windows.

The code in this chapter is fairly simple. I use this chapter only to demonstrate the idea of
interfaces and API-independence, not to show off fancy rendering effects. We will get to
the fancier code later.

Chapter 3 ■ Engineering the Engine50

CH03_p.041-090.qxd 6/1/04 2:39 PM Page 50

You will not see a lot on the front end, but on the back end, the engine will do a lot more,
such as detect underlying hardware and initialize Direct3D, providing a comfortable dia-
log where the user can select the settings he chooses. But now I have talked enough.
Following is the definition of the interface:

// File: ZFXRenderDevice.h
#define MAX_3DHWND 8

class ZFXRenderDevice
{
protected:

HWND m_hWndMain; // main window
HWND m_hWnd[MAX_3DHWND]; // render window(s)
UINT m_nNumhWnd; // number of render-windows
UINT m_nActivehWnd; // active window
HINSTANCE m_hDLL; // DLL module
DWORD m_dwWidth; // screen width
DWORD m_dwHeight; // screen height
bool m_bWindowed; // windowed mode?
char m_chAdapter[256]; // graphics adapter name
FILE *m_pLog; // logfile
bool m_bRunning;

public:
ZFXRenderDevice(void) {};
virtual ~ZFXRenderDevice(void) {};

// INIT/RELEASE STUFF:
// ===================
virtual HRESULT Init(HWND, const HWND*, int,

int, int, bool)=0;
virtual void Release(void) =0;
virtual bool IsRunning(void) =0;

// RENDERING STUFF:
// ================
virtual HRESULT UseWindow(UINT nHwnd)=0;
virtual HRESULT BeginRendering(bool bClearPixel,

bool bClearDepth,
bool bClearStencil)
=0;

Workspace for the Implementations 51

CH03_p.041-090.qxd 6/1/04 2:39 PM Page 51

virtual void EndRendering(void)=0;
virtual HRESULT Clear(bool bClearPixel,

bool bClearDepth,
bool bClearStencil) =0;

virtual void SetClearColor(float fRed,
float fGreen,
float fBlue)=0;

}; // class
typedef struct ZFXRenderDevice *LPZFXRENDERDEVICE;

C a u t i o n

Be warned: Do not show this code to hard-core C++ object-oriented programming gurus. These
programmers would criticize this code because when you define an interface, you should not define
attributes in the abstract class. This is a code design issue. In this book, I am less strict about design
matters, saving the derived classes from having something close to a billion attributes.

If you are new to C++, you will notice the virtual destructor of the interface. The same rea-
soning that leads to virtual functions also leads to virtual destructors. No matter what
pointer you use to point to an object, make sure that the correct destructor of the object
is called by making the destructor virtual. Normally, every constructor is virtual unless
you can guarantee that no one will ever cast a pointer to an object into something else.
Believe me, you can’t do that.

In addition to the constructor and destructor, there are several other functions that are
defined as purely virtual. You will see the meaning of each function when we implement
the functions, but I think the names are already hint at what the functions are meant to
do later on. From a graphical point of view there is not much to do yet. You can use the
method ZFXRenderDevice::SetClearColor to change the screen color and clear the screen
explicitly using the appropriate function. Clearing the color is already implicitly contained
in the ZFXRenderDevice::BeginRendering call. But don’t worry if you think there is not
much we can use this interface for. For now you are right, but later you will be able to use
most of Direct3D’s functionality through this interface. In addition, you will have learned
how to add other things not explicitly covered in this book.

Implementing the Static Library
The anchor for our work with a DLL is the static library ZFXRenderer. Its task is to decide
which DLL to load. The DLL in turn represents a render device that can be used to out-
put graphics on the screen. The implementation of this static library is quite short and will
not change over the course of this book. You need to recompile it only in one of two cases.
The first case is if you get into a situation where you indeed need to change something in

Chapter 3 ■ Engineering the Engine52

CH03_p.041-090.qxd 6/1/04 2:39 PM Page 52

the implementation. This will happen, for example, in a situation where you add another
DLL to the workspace and want the static library to load this new DLL. The second case
where you need to recompile the static library is when you are making changes to the
ZFXRenderDevice interface definition, because the static library uses its header and han-
dles pointers of the interface type.

That made clear, I show you now the header file for the static library’s only class. It is, not
surprisingly, called ZFXRenderer.

// file: ZFXRenderer.h
#include “ZFXRenderDevice.h”

class ZFXRenderer
{
public:

ZFXRenderer(HINSTANCE hInst);
~ZFXRenderer(void);

HRESULT CreateDevice(char *chAPI);
void Release(void);
LPZFXRENDERDEVICE GetDevice(void)

{ return m_pDevice; }
HINSTANCE GetModule(void)

{ return m_hDLL; }

private:
ZFXRenderDevice *m_pDevice;
HINSTANCE m_hInst;
HMODULE m_hDLL;

}; // class
typedef struct ZFXRenderer *LPZFXRENDERER;

This is the whole class that will not change anymore, correct? Well, yes, as I told you, this
class is short and easy to implement. The constructor simply takes the Windows instance
handle from the application using the ZFXEngine and stores it in one of its attributes. The
class will use it later on. Even more important is the attribute m_hDLL, which will receive
the handle from Windows for the loaded DLL. The third attribute m_pDevice is the most
important one around. It is a pointer to an object that implements the ZFXRenderDevice
interface. That object will be created using the ZFXRenderer::CreateDevice method. This
method takes a string as the input parameter specifying the DLL to be loaded.

You will be even more disappointed when you look at the constructor and destructor of
this class. They are quite short, as there is not really much to do:

Implementing the Static Library 53

CH03_p.041-090.qxd 6/1/04 2:39 PM Page 53

ZFXRenderer::ZFXRenderer(HINSTANCE hInst)
{
m_hInst = hInst;
m_hDLL = NULL;
m_pDevice = NULL;
}

ZFXRenderer::~ZFXRenderer(void)
{
Release();
}

Okay, before we move on to the more interesting stuff of this class, namely, the creation
of the interface-implementing object, we need to take a look at some other functions that
are also contained in the header file ZFXRenderDevice.h but that are not part of the class
itself:

// file: ZFXRenderDevice.h
extern “C”

{
HRESULT CreateRenderDevice(HINSTANCE hDLL, ZFXRenderDevice **pInterface);

typedef HRESULT (*CREATERENDERDEVICE)
(HINSTANCE hDLL, ZFXRenderDevice **pInterface);

HRESULT ReleaseRenderDevice(ZFXRenderDevice **pInterface);

typedef HRESULT(*RELEASERENDERDEVICE)
(ZFXRenderDevice **pInterface);

}

Here, I define the symbols CREATERENDERDEVICE and RELEASERENDERDEVICE for pointers to
the given functions CreateRenderDevice() and ReleaseRenderDevice(). Those functions
are declared as extern to indicate that we do not implement them here. This must be done
in another part of the source code, but it is stated here that we need to work with those func-
tions in our static library. As discussed previously, there is no direct way to export a class
straight from a DLL without knowing its declaration. However, you can use the functions
you see in the previous code to get a pointer of the interface type to an object implement-
ing the interface. These functions will be implemented in the DLL in a moment. This static
library knows only that those functions are somewhere around to be used and it uses them.

Oh, and the “C” means that the functions should be exported in plain C style without C++
name mangling. The overhead of object orientation forces C++ to twist around the func-

Chapter 3 ■ Engineering the Engine54

CH03_p.041-090.qxd 6/1/04 2:39 PM Page 54

tion names and parameter lists a bit, but we don’t want to worry about that and so we
enforce plain C usage of those functions here.

Loading DLLs
The following function is responsible for creating an object that implements the interface.
It takes a string as a parameter that specifies the name identifying the DLL to be used. To
keep things simple here, I included one possible option for this string, namely “Direct3D”.
This will identify that the caller wants to load the implementation of the interface that fea-
tures Direct3D. Any other string will result in an error message thrown out by the func-
tion, as you can see for yourself in the following code:

HRESULT ZFXRenderer::CreateDevice(char *chAPI)
{
char buffer[300];

if (strcmp(chAPI, “Direct3D”) == 0)
{
m_hDLL = LoadLibrary (“ZFXD3D.dll”);
if (!m_hDLL)

{
MessageBox(NULL,

“Loading ZFXD3D.dll failed.”,
“ZFXEngine - error”, MB_OK | MB_ICONERROR);

return E_FAIL;
}

}
else

{
_snprintf(buffer, 300, “API ‘%s’ not supported.”, chAPI);
MessageBox(NULL, buffer, “ZFXEngine - error”,

MB_OK | MB_ICONERROR);
return E_FAIL;
}

CREATERENDERDEVICE _CreateRenderDevice = 0;
HRESULT hr;

// pointer to DLL function ‘CreateRenderDevice’
_CreateRenderDevice = (CREATERENDERDEVICE)

GetProcAddress(m_hDLL,
“CreateRenderDevice”);

Implementing the Static Library 55

CH03_p.041-090.qxd 6/1/04 2:39 PM Page 55

if (!_CreateRenderDevice) return E_FAIL;

// call DLL function to create the device
hr = _CreateRenderDevice(m_hDLL, &m_pDevice);
if (FAILED(hr))

{
MessageBox(NULL,

“CreateRenderDevice() from lib failed.”,
“ZFXEngine - error”, MB_OK | MB_ICONERROR);

m_pDevice = NULL;
return E_FAIL;
}

return S_OK;
} // CreateDevice

If the function gets a string that specifies a DLL that it recognizes, then the function will
do all the things necessary to load the DLL and create an object of the interface imple-
mentation. If the caller uses the Direct3D API, the function will load the ZFXD3D.dll. You
will see this library’s implementation shortly. The function uses the following Windows
API function to load a DLL at runtime:

HINSTANCE LoadLibrary(LPCTSTR lpLibFileName);

For the single parameter of this thing, pass in the name of the DLL you want to load. Now
for the guts of this function. It will ensure that the DLL is loaded into memory only once.
If another application is already using the DLL, the function ensures that the memory is
mapped in a way that this application will also have access to the DLL. This is another
advantage of using DLLs. They are loaded only one time when they are needed.

Now the return value gets interesting. If the call succeeds, you will get an instance handle
from Windows. Whenever you need to call Windows API functions inside the dynamic
link library that are requesting an instance handle as parameter, you must not use the
application’s instance handle but the handle of the library itself—that is, the return value
of this function.

Sniffing for Exported Functions inside DLLs
Let’s suppose now that the call was successful and we loaded the DLL. Now we want an
object from the class ZFXD3D inside the DLL, but you can’t see this class inside the DLL. For
this reason, I define the external function CreateRenderDevice(), which must be imple-
mented in the DLL. The problem now is to catch up with this function implementation.
Unlike static libraries, you don’t know the address of a function inside a DLL at compile

Chapter 3 ■ Engineering the Engine56

CH03_p.041-090.qxd 6/1/04 2:39 PM Page 56

time so you cannot just call the function. The linker would not be able to find it because
it does not have the compiled version of the DLL at hand.

There is a way around this potential disaster. You can just sniff inside a DLL and seek the
address of any exported function at runtime. This is done using the following Windows
API function:

FARPROC GetProcAddress(HMODULE hModule, LPCTSTR lpProcName);

You have to pass in the handle of the loaded DLL as the first parameter to this function. Don’t
get freaked by Microsoft messing around with different handle names, as they are all more or
less the same type. The HMODULE handle you need to use here is the same handle returned by
the LoadLibrary() function, even if it was called HINSTANCE when it was returned.

You can see how this all is connected. You can use this function to get the address of the
CreateRenderDevice() inside the DLL and store this address in the pointer called
_CreateRenderDevice. Then you can call the function, and if everything goes well, you
have a valid object of the class ZFXD3D from the DLL stored in the attribute m_pDevice.
Please note that this attribute is the interface type ZFXRenderDevice. The static library does
not need to know anything about the class ZFXD3D at all.

That’s how interfaces work. Neat, isn’t it? To make this clearer, I will now show you the
ZFXRenderer::Release method. It does the very same thing, except that it sniffs for and
calls the ReleaseRenderDevice() function from the DLL.

void ZFXRenderer::Release(void)
{
RELEASERENDERDEVICE _ReleaseRenderDevice = 0;
HRESULT hr;

if (m_hDLL)
{
// pointer to dll function ‘ReleaseRenderDevice’
_ReleaseRenderDevice = (RELEASERENDERDEVICE)

GetProcAddress(m_hDLL,
“ReleaseRenderDevice”);

}
// call dll’s release function
if (m_pDevice)

{
hr = _ReleaseRenderDevice(&m_pDevice);
if (FAILED(hr))

{
m_pDevice = NULL;
}

Implementing the Static Library 57

CH03_p.041-090.qxd 6/1/04 2:39 PM Page 57

}
} // Release

As you will see in a moment, the object that implements the interface is created inside the
DLL. Therefore, I let the DLL do the release job of this object as well because the object’s
memory has been allocated on the DLL’s heap. To do this, you have to get the pointer to
the release function that is exported. If you have that pointer, call the function and hand
to it the object that should be deleted. Again, there’s no magic behind this.

Maybe the definitions CREATERENDERDEVICE and RELEASERENDERDEVICE are a bit confusing
for you, but they actually tell the compiler which parameter list belongs to that function
pointer. Without that, the compiler would not be able to verify if you called the function
in a way that doesn’t blow up the call stack.

Now for the good news. I’m glad you made it so far. As far as I can see, we just suffered
slight losses in taking that hill here. Good job, Soldier. You’re done with the static library
loading a DLL now. The bad news? Well, there is another hill to be taken tonight. Now,
move it!

Implementing the DLL
Change the active project to the ZFXD3D project. I’ll show you now how to encapsulate
Direct3D inside this project. The benefit of the encapsulation is that anyone using our
engine does not need to know a single piece of information about Direct3D. He does not
need to have the DirectX SDK (Software Development Kit) installed and there is no need
to mess around with Direct3D data types or classes.

Note the attribute m_pChain[MAX_3DHWND] in the following class definition. Even if the
engine we implement in this book is a small demo project, I want to make it as complete
as possible. One of the frequently asked questions in bulletin boards about game pro-
gramming goes like this: “I want to render graphics into multiple child views for my edi-
tor. How do I do that?”

There are a number of ways to achieve this goal using DirectX, but the way it’s meant to
be done is to use the so-called Direct3D swap chains, which are basically used to take one
rendered image each. I will go into more detail about that later. For now, note that our
engine supports up to MAX_3DHWND different child windows that you can render your
graphics into. The handles to those different windows are stored in the attribute m_pChain.

// file: ZFXD3D.h

#define MAX_3DHWND 8

class ZFXD3D : public ZFXRenderDevice
{

Chapter 3 ■ Engineering the Engine58

CH03_p.041-090.qxd 6/1/04 2:39 PM Page 58

public:
ZFXD3D(HINSTANCE hDLL);
~ZFXD3D(void);

// initialization
HRESULT Init(HWND, const HWND*, int, int, int,

bool);

BOOL CALLBACK DlgProc(HWND, UINT, WPARAM, LPARAM);

// interface functions
void Release(void);
bool IsRunning(void) { return m_bRunning; }
HRESULT BeginRendering(bool,bool,bool);
HRESULT Clear(bool,bool,bool);
void EndRendering(void);
void SetClearColor(float, float, float);
HRESULT UseWindow(UINT nHwnd);

private:
ZFXD3DEnum *m_pEnum;
LPDIRECT3D9 m_pD3D;
LPDIRECT3DDEVICE9 m_pDevice;
LPDIRECT3DSWAPCHAIN9 m_pChain[MAX_3DHWND];
D3DPRESENT_PARAMETERS m_d3dpp;
D3DCOLOR m_ClearColor;
bool m_bIsSceneRunning;
bool m_bStencil;

// start the API
HRESULT Go(void);

void Log(char *, ...);
}; // class

As you can see, there are eight public functions in this class in addition to the constructor
and destructor. Seven of these functions need to be there as they stem from the interface
that this class inherits from. The other function is called ZFXD3D::DlgProc. Although this
function is public, don’t forget that the class ZFXD3D itself cannot be seen from outside the
DLL so the public attribute resolves effectively to “can be seen by all objects inside the
DLL.” This function is needed to process the messages connected to the dialog box that
the engine uses to let the user select some settings for the display modes and stuff.

Implementing the DLL 59

CH03_p.041-090.qxd 6/1/04 2:39 PM Page 59

N o t e

Member functions in derived classes that override virtual member functions from the parent
class(es) are automatically tagged as virtual by the compiler. There is no way around being virtual
for those functions even if you don’t use the keyword virtual explicitly. Naturally, it is advisable
to use the keyword anyway so one can see at first glance that those functions are virtual.

Enumeration from the DirectX SDK
Several attributes in the ZFXD3D class store the most important Direct3D objects and infor-
mation about the graphics adapter capabilities or active settings. You need some functions
to get the graphics adapter to reveal its deepest secrets, namely, its capabilities. This is all
part of the enumeration of available graphics adapters and their modes. In this imple-
mentation, I use a class ZFXD3DEnum to do this job, and its methods are quite similar to the
stuff provided by the DirectX SDK common files. I don’t want to bore you by explaining
the DirectX framework to you.

If you are unsure about those enumeration things and want to learn them first, feel free
to dig through the common files and see how enumeration is done there. My implemen-
tation is nothing more than a boiled-down version of it. So you can take a look at my class
instead, because I think it is easier to grasp. You can find the class implementation on the
CD-ROM accompanying this book.

What Is Coming Next?
Before we get started implementing the DLL’s ZFXD3D class, I want to make sure that you
know what is coming next. The interface demands that we provide an Init() function to
crank up the graphics API our DLL wants to use. It is advisable to make this powering-up
process as flexible as possible and use as little hard coding as possible. One thing people
like to do to achieve that flexibility is write an init file containing all the values for screen
width and height and things and so on. During powering up, the engine parses the init
file. But I want to do it another way. I will show you how to implement a Windows dialog
box that pops up during initialization and lets the user select some settings to influence
these values in the most flexible way.

Still, our engine is very easy to work with. You only need to call one initialization function
and that will kick off an internal process that includes enumeration and the dialog box to
let the user decide which settings should be used (such as fullscreen or windowed, and so
on). If you take a look at the DirectX SDK samples, you see that you can switch all those
settings at runtime. This comes along with some overhead of resetting the Direct3D
device, so I’m not going to include this feature in the ZFXEngine. I want to keep the code
as simple to follow as possible. You can always refer to the DirectX SDK common files to
see how to switch at runtime.

Chapter 3 ■ Engineering the Engine60

CH03_p.041-090.qxd 6/1/04 2:39 PM Page 60

Okay, but before we can start implementing our class I want to show you the implemen-
tation of the exported functions. These are the functions the static library sniffs for via
GetProAddress().

Exported Functions
You still remember the empty files we created for the ZFXD3D project, don’t you? If you
do, then you also remember that mysterious ZFXD3D.def file, which is somehow related to
exporting functions from a DLL. I already talked about exporting functions from a DLL
and how you can do it. The following “code” is what you need to write into the def file to
export the functions the static library ZFXRenderer will sniff for:

; file: ZFXD3D.def
; DLL exports the following functions
LIBRARY “ZFXD3D.dll”
EXPORTS

CreateRenderDevice
ReleaseRenderDevice

; end of file :-)

As you might have already guessed, the semicolon defines a comment in a def file. Then
you need to write the name of the library after the keyword LIBRARY so that the file can be
identified as belonging to the named DLL and to define exports for that library. After that
you use the keyword EXPORTS to name your wishes, that is, to name the symbols that
should be exported from the DLL and that are therefore visible and accessible to other
applications using this DLL. Here you only have to define the two functions we already
talked about by their names. The parameter lists for the functions are not needed when
you export them.

C a u t i o n

If you are using Visual C++ or Visual Studio .NET (version 7.0 or newer), you will sometimes get
into trouble with the def files. The trouble is that they don’t work and as a result of this, the func-
tions are not exported. The GetProcAddress() function then returns a NULL pointer because it
cannot find what you want it to look for.

When this happens, you need to remove the function declarations CreateRenderDevice() and
ReleaseRenderDevice() from the file ZFXRenderDevice.h, but the two typedef instructions
must remain in place there. Now move the two declarations into a header file inside the DLL pro-
ject ZFXD3D and add the following prefix to the declarations and function definitions: extern “C”
__declspec(dllexport)

Now these two functions are marked as exports inside the DLL and will be found by the GetProc-
Address() call.

Implementing the DLL 61

CH03_p.041-090.qxd 6/1/04 2:39 PM Page 61

Now get ready to see how cute these two exported functions really are. There is not much
behind them other than creating an object or deleting it. But please note that though the
object created is from the class ZFXD3D, it is returned as a reference with a pointer of the
interface type ZFXRenderDevice:

// file: ZFXD3D_init.cpp
#include “ZFX.h”

HRESULT CreateRenderDevice(HINSTANCE hDLL, ZFXRenderDevice **pDevice)
{
if (!*pDevice)

{
*pDevice = new ZFXD3D(hDLL);
return ZFX_OK;
}

return ZFX_FAIL;
}

HRESULT ReleaseRenderDevice(ZFXRenderDevice **pDevice)
{
if (!*pDevice)

{
return ZFX_FAIL;
}

delete *pDevice;
*pDevice = NULL;
return ZFX_OK;
}

If you want to create such an object, you need to know the handle to the loaded DLL, as
this is used by the constructor of the ZFXD3D class. You need this handle to open up a dia-
log from inside the DLL, for example, or to access any other kind of resource stored in the
DLL, such as icons. The release of the object is just a plain delete call to the object, which
forces its destructor to go to work and then free all memory used for the object itself. The
interesting thing here is that you don’t need to cast the interface type pointer to a ZFXD3D
pointer. Because of the virtual destructor, the delete call correctly calls the ZFXD3D class’s
constructor, as this is the class the object originally stems from. There are times when
object-oriented programming makes life easier, as you might know.

To recap, you made the class ZFXD3D available from outside the DLL without the need for
the user to know this class at all. If you just know the interface definition, you can use the
render device object.

Chapter 3 ■ Engineering the Engine62

CH03_p.041-090.qxd 6/1/04 2:39 PM Page 62

Comfort By Dialogs
To keep the engine as flexible as possible to demonstrate what you can do to satisfy your
customers, I’ll now show you how to use a dialog to make settings during the startup
phase of the engine. Then I’ll talk about that nasty enumeration stuff Direct3D comes
along with, but hey, OpenGL has its extensions, which you need to verify before using
them.

Assume you are done with an enumeration, so you have a whole list of modes and capa-
bilities the current hardware provides. So what do you do with it? Should you as engine
programmer select what you think is the best possible option for the user? Definitely do
not do this. Instead, use a container that displays the most important findings of the enu-
meration process. This container is a simple dialog in which the user can choose the set-
tings he prefers.

Creating the Dialog

You need to activate the ZFXD3D project now. Go to the Insert menu and select Resource.
From the upcoming dialog, select Dialog, and then select the New button. You just created
a new resource object and Visual C++ changes to its resource editor automatically.

By double-clicking on a control element (button, drop down list, and so on) or on the dia-
log box itself, you make the Attributes dialog box for this item show up. The most impor-
tant field here is the one named ID. Here you need to provide a unique identifier. Try it
out and identify the dialog box as “dlgChangeDevice”. It is very important here to include
the quotation marks in the ID field as well. Otherwise, you have to resolve the ID to the
actual name of the dialog if you want to show it.

You are probably familiar with creating custom dialogs in the resource editor. If not, play
around with it for a few minutes. It’s not complicated. Then insert the controls from the
list below into the dialog. Give them the IDs shown in the list. This time, don’t use quo-
tation marks because for the controls of a dialog it is much easier to use a macro to resolve
a plain ID that the resource editor can connect to. This is a plain number as opposed to a
real string.

■ Combo box named IDC_ADAPTER

■ Combo box named IDC_MODE

■ Combo box named IDC_ADAPTERFMT

■ Combo box named IDC_BACKFMT

■ Combo box named IDC_DEVICE

■ Radio button named IDC_FULL

■ Radio button named IDC_WND

■ Buttons named IDOK and IDCANCEL

Implementing the DLL 63

CH03_p.041-090.qxd 6/1/04 2:39 PM Page 63

The combo box controls are used to offer the available graphics adapters and their video
modes for selection to the user. Most adapters are capable of using several video modes or
screen resolutions (800x600 or 1024x768, for example). Then there are two combo boxes
for the color format because, since Direct3D 9, it is possible to use different formats for
the front buffer and the back buffer if the program is running in windowed mode. You are
not bound to the current desktop format the user is running.

The last combo box is used for the type of the Direct3D device. There are only two types
available. First is the HAL device, the Hardware Abstraction Layer. This is the graphics
adapter. The other one is the REF, the Reference Rasterizer. I hope you already know that
Direct3D can emulate almost everything in software if the hardware is not able to do it.
The REF enables you to run most of the Direct3D features on ancient hardware that does
not even provide hardware transformation and lighting.

C a u t i o n

Using the REF is not recommended, except for testing scenarios in which you don’t have the hard-
ware available to do the features you want to test. It is incredibly slow and not meant for real-time
applications. Even the poorest hardware can beat a software implementation on features it actu-
ally provides. Furthermore, the REF device isn’t even guaranteed to be available in a non-debug
install of DirectX.

The two radio buttons in the dialog can be used to select whether to start the engine in
windowed or fullscreen mode. Figure 3.1 shows how the dialog box will look in the run-
ning engine program later on.

If you are still with me and have followed all these steps, select the Save button in Visual
C++ to save the project. Note that a dialog box asks you to save your resource first. Save
the list, and then select the ZFXD3D directory; name the file dlgChangeDevice.rc. This auto-
generates a file called resource.h, which contains some ID stuff and definitions in a script
form. Visual C++ needs this to build the dialog when you compile the project.

Add the two files I just mentioned to the project into a resource directory. This enables
you to use the dialog you just created. The resource header must be included in every file
where you want to use something from the dialog. Mostly this is when you want to access
the control elements in the dialogs and need their IDs for Windows function calls.

But first, let’s review dialog boxes and how to call them from a program. A dialog box in
Windows is basically the same kind of object as a window. The same is true for the con-
trol elements that sit inside the dialog. So if you want to get messages from these controls
or send messages to them, you need to have a callback procedure for the dialog like you
would have for a simple window.

The following Windows API function lets you show a dialog box and name the callback
procedure that should handle the messages coming from the open dialog:

Chapter 3 ■ Engineering the Engine64

CH03_p.041-090.qxd 6/1/04 2:39 PM Page 64

int DialogBox(HINSTANCE hInstance, LPCTSTR lpTemplate, HWND hWndParent,
DLGPROC lpDialogFunc);

The first parameter has to be the instance handle of the module containing the resource.
As you work inside a DLL, it needs to be the DLL’s handle. You remember the value we
retrieved as return value from the LoadLibraryEx() call? And the dialog here is the only
reason we need to know this handle in this project. This is why the constructor of the
ZFXD3D class asks for it. Next, you need to understand the meaning of the parameters.

The second parameter must be the ID of a template used for the dialog. This is the dialog box
you designed using the resource editor. If you had given it a plain ID you would need to resolve
this now by using the MAKEINTRESOURCE() macro. However, you were smart enough to use a
real string as the ID so you can enter that string here to load the dialog. The next parameter is
the handle of the parent window. You see, the dialog is just a window, a child to its dad.

The last parameter is the name of the callback procedure that should handle the window’s
messages. This is a problem because object-oriented programmers want a member func-
tion as a callback routine. That is not possible because the existence of the callback func-
tion must be ensured at compile time, but a normal member function’s existence is bound
to the existence of an object of the according class. Now you could use a static member
function. This would be okay, but it comes at the price of not having access to member
variables of the class.

Implementing the DLL 65

Figure 3.1 The selection dialog as it will appear in the final program version

CH03_p.041-090.qxd 6/1/04 2:39 PM Page 65

Message Procedure for the Dialog

The thing is, you want this kind of access. In this instance, you want to read the user’s
selections right into some member variables of the class. I will return to this problem in a
moment, but first I want to show you what the callback function should look like:

ZFXDEVICEINFO g_xDevice;
D3DDISPLAYMODE g_Dspmd;
D3DFORMAT g_fmtA;
D3DFORMAT g_fmtB;

BOOL CALLBACK ZFXD3D::DlgProc(HWND hDlg, UINT message,
WPARAM wParam, LPARAM lParam)

{
DIBSECTION dibSection;
BOOL bWnd=FALSE;

// get handles
HWND hFULL = GetDlgItem(hDlg, IDC_FULL);
HWND hWND = GetDlgItem(hDlg, IDC_WND);
HWND hADAPTER = GetDlgItem(hDlg, IDC_ADAPTER);
HWND hMODE = GetDlgItem(hDlg, IDC_MODE);
HWND hADAPTERFMT = GetDlgItem(hDlg, IDC_ADAPTERFMT);
HWND hBACKFMT = GetDlgItem(hDlg, IDC_BACKFMT);
HWND hDEVICE = GetDlgItem(hDlg, IDC_DEVICE);

switch (message)
{
// preselect windowed mode
case WM_INITDIALOG:

{
SendMessage(hWND, BM_SETCHECK, BST_CHECKED, 0);
m_pEnum->Enum(hADAPTER, hMODE, hDEVICE,

hADAPTERFMT, hBACKFMT,
hWND, hFULL, m_pLog);

return TRUE;
}

// render logo (g_hBMP is initialized in Init())
case WM_PAINT:

{
if (g_hBMP)

Chapter 3 ■ Engineering the Engine66

CH03_p.041-090.qxd 6/1/04 2:39 PM Page 66

{
GetObject(g_hBMP, sizeof(DIBSECTION),

&dibSection);
HDC hdc = GetDC(hDlg);
HDRAWDIB hdd = DrawDibOpen();
DrawDibDraw(hdd, hdc, 50, 10, 95, 99,

&dibSection.dsBmih,
dibSection.dsBm.bmBits, 0, 0,
dibSection.dsBmih.biWidth,
dibSection.dsBmih.biHeight, 0);

DrawDibClose(hdd);
ReleaseDC(hDlg, hdc);
}

} break;

// a control reports a message
case WM_COMMAND:

{
switch (LOWORD(wParam))

{
// OK button
case IDOK:

{
m_bWindowed = SendMessage(hFULL,

BM_GETCHECK, 0, 0) != BST CHECKED;
m_pEnum->GetSelections(&g_xDevice,

&g_Dspmd,
&g_fmtA,
&g_fmtB);

GetWindowText(hADAPTER,m_chAdapter,256);
EndDialog(hDlg, 1);
return TRUE;
} break;

// cancel button
case IDCANCEL:

{
EndDialog(hDlg, 0);
return TRUE;
} break;

case IDC_ADAPTER:

Implementing the DLL 67

CH03_p.041-090.qxd 6/1/04 2:39 PM Page 67

{
if(HIWORD(wParam)==CBN_SELCHANGE)

m_pEnum->ChangedAdapter();
} break;

case IDC_DEVICE:
{
if(HIWORD(wParam)==CBN_SELCHANGE)

m_pEnum->ChangedDevice();
} break;

case IDC_ADAPTERFMT:
{
if(HIWORD(wParam)==CBN_SELCHANGE)

m_pEnum->ChangedAdapterFmt();
} break;

case IDC_FULL: case IDC_WND:
{
m_pEnum->ChangedWindowMode();
} break;

} // switch [CMD]
} break; // case [CMD]

} // switch [MSG]
return FALSE;
}

On initialization of the dialog, there are already some actions that need to take place. The
most important is that you have to call the ZFXD3DEnum::Enum function. This kicks off all
those enumeration things I talked about earlier, which you should know from the DirectX
SDK common files. As parameters, the function wants to get the handles to all the con-
trols of the dialog to fill them with the findings of the enumerations. This way an instance
of the ZFXD3DEnum class always has access to the control element of the dialog and can read
or write the dialog’s contents. When this call is done, the control elements of the dialog,
especially the combo box lists, are filled with entries about the hardware capabilities.

The next part of the procedure renders a logo image into the dialog box. This is just to
show off. You need only basic functionalities from the Windows API. If this is not the case,
please refer to the MSDN Library (Microsoft Developer Network) for the functions used in
this case. To make this work, you need to link the library vfw32.lib (video for Windows)
and include its header vfw.h. Note that the bitmap file with the logo is already loaded in
the function ZFXD3D::Init.

Finally, the callback procedure handles the message WM_COMMAND. This message is sent by
Windows to the dialog when an event occurs from one of the control elements. You can

Chapter 3 ■ Engineering the Engine68

CH03_p.041-090.qxd 6/1/04 2:39 PM Page 68

now check the lower part of the WPARAM parameter, which contains the plain ID of the con-
trol that is involved. Windows provides the macro LOWORD to evaluate only the lower parts
of a given parameter.

You can see that the procedure calls one of the following functions according to the event
that happened. If the user changes the selection in the Device combo box, for example,
then the function ChangedDevice() from the class ZFXD3DEnum is called.

■ ZFXD3DEnum::ChangedAdapter

■ ZFXD3DEnum::ChangedDevice

■ ZFXD3DEnum::ChangedAdapterFmt

■ ZFXD3DEnum::ChangedWindowMode

All these functions have the same purpose. If the user changes one selection, it might
influence the possible options for the other settings. The HAL might not have as many
possible formats as the REF, for example. The ZFXD3DEnum class then walks through its
enumerated lists and fills the dialog combo boxes with the possible choices available for
the setting the user just selected. This is fairly simple.

Shutting Down the Dialog

The only two controls that are handled a bit differently are the OK button and the Cancel
button. The following Windows API function makes the dialog disappear from the screen
and your mind by destroying it.

BOOL EndDialog(HWND hWnd, int nResult);

Again you see that the dialog is just a window because for the first parameter you have to
hand over the handle of the dialog you want to make quit. The second parameter is more
interesting because it allows you to control a crucial return value we have not yet talked
about. This return value is given to you by the DialogBox() function. Does this sound
strange? It is not. You call DialogBox() somewhere inside your application. This brings up
the dialog box and makes its callback procedure active, as long as you call EndDialog()
from somewhere. As this dialog is modal, which means that the application is stalled as
long as the dialog and its callback procedure are active, this call normally takes place in
the callback procedure. From here, you can define what value should be returned to the
point where the “normal” application waits for the dialog to end. This is the place where
it all began: the DialogBox() call itself.

Now you can see that the dialog returns 0 in the case that the user canceled the dialog and
1 in the case that the user hit the OK button. It is also important to know that
DialogBox()returns a value of –1 if the call itself fails because of a missing dialog resource
or something similar. So you’d better not interfere with negative return values via the
EndDialog() call.

Implementing the DLL 69

CH03_p.041-090.qxd 6/1/04 2:39 PM Page 69

But back to the OK Button case. You have to call the ZFXD3DEnum::GetSelections function
there to make the class save the current settings from the dialog to global variables or
ZFXD3D class variables. The structure ZFXDEVICEINFO contains a value from the enumera-
tion that describes the device capabilities that should be used to initialize the Direct3D
device, such as its modes and with which adapter it belongs. Again this structure is very
similar to the one used in the DirectX SDK common files.

End the dialog and return 1 to signal a successful termination of the dialog. You can now
look at how the initialization of the engine is done and how it uses the dialog. You still
remember the problem of using callback functions in a class, don’t you?

Initialization, Enumeration, and Shutdown
Everything starts with the constructor of the class ZFXD3D that is called from the exported
function CreateRenderDevice(), which in turn is called by the static library class
ZFXRenderer if the user wants to initialize the render device. So here is the constructor:

ZFXD3D *g_ZFXD3D=NULL;

ZFXD3D::ZFXD3D(HINSTANCE hDLL)
{
m_hDLL = hDLL;
m_pEnum = NULL;
m_pD3D = NULL;
m_pDevice = NULL;
m_pLog = NULL;
m_ClearColor = D3DCOLOR_COLORVALUE(

0.0f, 0.0f, 0.0f, 1.0f);
m_bRunning = false;
m_bIsSceneRunning = false;

m_nActivehWnd = 0;

g_ZFXD3D = this;
}

The only interesting thing in this constructor is the global variable g_ZFXD3D. As you can
see, we set it to the this pointer. Given that the user creates only one object of this class
we now have a global pointer to that object. I agree that is not a smart way to build some-
thing like a singleton, but then it does its job. If you look at the DirectX SDK common
files, you will find a big software company from Redmond does the very same thing, so I
guess you and I can live with that quick ’n dirty solution in this book.

Have a quick look at the destructor and then follow me to further explanations about
global variables and callback procedures.

Chapter 3 ■ Engineering the Engine70

CH03_p.041-090.qxd 6/1/04 2:39 PM Page 70

ZFXD3D::~ZFXD3D()
{
Release();
}

void ZFXD3D::Release()
{
if (m_pEnum)

{
delete m_pEnum;
m_pEnum = NULL;
}

if(m_pDevice)
{
m_pDevice->Release();
m_pDevice = NULL;
}

if(m_pD3D)
{
m_pD3D->Release();
m_pD3D = NULL;
}

fclose(m_pLog);
}

Initializations Process Chain

Using the render device interface, you can call the following function to initialize the ren-
der device. (This function is short, which means you will need more functions to write
and call.) But first dig your way through it.

HBITMAP g_hBMP;

HRESULT ZFXD3D::Init(HWND hWnd, const HWND *hWnd3D,
int nNumhWnd, int nMinDepth,
int nMinStencil, bool bSaveLog)

{
int nResult;

m_pLog = fopen(“log_renderdevice.txt”, “w”);
if (!m_pLog) return ZFX_FAIL;

// should I use child windows??

Implementing the DLL 71

CH03_p.041-090.qxd 6/1/04 2:39 PM Page 71

if (nNumhWnd > 0)
{
if (nNumhWnd > MAX_3DHWND) nNumhWnd = MAX_3DHWND;
memcpy(&m_hWnd[0], hWnd3D, sizeof(HWND)*nNumhWnd);
m_nNumhWnd = nNumhWnd;
}

// else use main window handle
else

{
m_hWnd[0] = hWnd;
m_nNumhWnd = 0;
}

m_hWndMain = hWnd;;

if (nMinStencil > 0) m_bStencil = true;

// generate enum object
m_pEnum = new ZFXD3DEnum(nMinDepth, nMinStencil);

// load ZFX logo
g_hBMP = (HBITMAP)LoadImage(NULL, “zfx.bmp”,

IMAGE_BITMAP,0,0,
LR_LOADFROMFILE |
LR_CREATEDIBSECTION);

// open up dialog
nResult = DialogBox(m_hDLL, “dlgChangeDevice”, hWnd,

DlgProcWrap);

// free resources
if (g_hBMP) DeleteObject(g_hBMP);

// error in dialog
if (nResult == -1)

return ZFX_FAIL;
// dialog canceled by user
else if (nResult == 0)

return ZFX_CANCELED;
// dialog ok
else

return Go();
}

Chapter 3 ■ Engineering the Engine72

CH03_p.041-090.qxd 6/1/04 2:39 PM Page 72

There are several parameters to this function, so let’s take them one by one. The first
parameter is the handle of the application’s main window. Easy. The second parameter is
an array of handles with the number of entries following in the third parameter. You only
need those if you don’t want to render into the main application window and use one or
more child windows instead. The function does nothing more than copy the data it needs
from the parameters to the member variables.

The next two parameters specify the minimum bit depth you want to use for the depth
buffer and the stencil buffer. The last parameter specifies whether the caller wants a secure
log file that streams each entry at once, thereby making this secure even if the application
crashes.

Okay, now back to the callback problem. The function quickly loads the bitmap file used
for the logo and creates a ZFXD3DEnum object. Then it calls the dialog box. But instead of
providing our ZFXD3D::DlgProc defined previously, which wouldn’t work for reasons
stated, it uses a callback procedure named DlgProcWrap(). This is a plain C function and
looks like this:

BOOL CALLBACK DlgProcWrap(HWND hDlg,
UINT message,
WPARAM wParam,
LPARAM lParam)

{
return g_ZFXD3D->DlgProc(hDlg,

message,
wParam,
lParam);

}

Again, this is not pretty, but it is a quick (and dirty) workaround to use the callback func-
tion from the ZFXD3D class. This callback procedure delegates the call and that is why the
global object points to the last (and only) created instance of the ZFXD3D class.

Now if everything goes right, you will have filled some global and member variables with
the settings based on the user’s selections from the dialog. The only thing remaining is to
crank up the Direct3D device (finally!). As this is a quite lengthy process, I provided its
own function for it. It is called ZFXD3D::Go and it looks like this:

HRESULT ZFXD3D::Go(void)
{
ZFXCOMBOINFO xCombo;
HRESULT hr;
HWND hwnd;

Implementing the DLL 73

CH03_p.041-090.qxd 6/1/04 2:39 PM Page 73

// create Direct3D main object
if (m_pD3D)

{
m_pD3D->Release();
m_pD3D = NULL;
}

m_pD3D = Direct3DCreate9(D3D_SDK_VERSION);

if (!m_pD3D) return ZFX_CREATEAPI;

// get fitting combo
for (UINT i=0; i<g_xDevice.nNumCombo; i++)

{
if ((g_xDevice.d3dCombo[i].bWindowed ==

m_bWindowed)
&& (g_xDevice.d3dCombo[i].d3dDevType ==

g_xDevice.d3dDevType)
&& (g_xDevice.d3dCombo[i].fmtAdapter ==

g_fmtA)
&& (g_xDevice.d3dCombo[i].fmtBackBuffer ==

g_fmtB))
{
xCombo = g_xDevice.d3dCombo[i];
break;
}

}

// fill in present parameters structure
ZeroMemory(&m_d3dpp, sizeof(m_d3dpp));
m_d3dpp.Windowed = m_bWindowed;
m_d3dpp.BackBufferCount = 1;
m_d3dpp.BackBufferFormat = g_Dspmd.Format;
m_d3dpp.EnableAutoDepthStencil = TRUE;
m_d3dpp.MultiSampleType = xCombo.msType;
m_d3dpp.AutoDepthStencilFormat = xCombo.fmtDepthStencil;
m_d3dpp.SwapEffect = D3DSWAPEFFECT_DISCARD;

// stencil buffer active?
if ((xCombo.fmtDepthStencil == D3DFMT_D24S8)

|| (xCombo.fmtDepthStencil == D3DFMT_D24X4S4)
|| (xCombo.fmtDepthStencil == D3DFMT_D15S1))
m_bStencil = true;

Chapter 3 ■ Engineering the Engine74

CH03_p.041-090.qxd 6/1/04 2:39 PM Page 74

else
m_bStencil = false;

// fullscreen mode
if (!m_bWindowed)

{
m_d3dpp.hDeviceWindow = hwnd = m_hWndMain;
m_d3dpp.BackBufferWidth = g_Dspmd.Width;
m_d3dpp.BackBufferHeight = g_Dspmd.Height;
ShowCursor(FALSE);
}

// windowed mode
else

{
m_d3dpp.hDeviceWindow = hwnd = m_hWnd[0];
m_d3dpp.BackBufferWidth =

GetSystemMetrics(SM_CXSCREEN);
m_d3dpp.BackBufferHeight =

GetSystemMetrics(SM_CYSCREEN);
}

// create direct3d device
hr = m_pD3D->CreateDevice(g_xDevice.nAdapter,

g_xDevice.d3dDevType,
m_hWnd, xCombo.dwBehavior,
&m_d3dpp, &m_pDevice);

// create swap chains if needed
if ((m_nNumhWnd > 0) && m_bWindowed)

{
for (UINT i=0; i<m_nNumhWnd; i++)

{
m_d3dpp.hDeviceWindow = m_hWnd[i];
m_pDevice->CreateAdditionalSwapChain(

&m_d3dpp, &m_pChain[i]);
}

}

delete m_pEnum;
m_pEnum = NULL;

if (FAILED(hr)) return ZFX_CREATEDEVICE;

Implementing the DLL 75

CH03_p.041-090.qxd 6/1/04 2:39 PM Page 75

m_bRunning = true;
m_bIsSceneRunning = false;
return ZFX_OK;
} // Go

In this function, you don’t need to do anything other than run through the objects of the
ZFXCOMBOINFO structures and find the one that fits the user’s wishes. From this object, you
can then retrieve the values you need to fill in the present parameters structure from
Direct3D, and you can initialize the Direct3D device—finally!

There are some minor issues involved in running in either windowed or fullscreen mode.
After that, the device is ready to go and ready to pump polygons to the graphics adapter.
Please note that the name combo has nothing to do with a combo box control. This name
was introduced in the DirectX 9 common files, and it describes a combination of front
buffer and back buffer format, an adapter, a device type, a vertex processing type, and the
depth-stencil format. I want to show you what is happening with the common files.

C a u t i o n

In this current design, you force the users of the engine to accept the dialog that pops up each time
an end user runs his application. This might be useful for applications such as games that can run
either windowed or fullscreen. But it is nonsense for applications meant to run in windowed mode
only, such as tools and editors. Therefore, I added a method ZFXRenderDevice::InitWindowed
as an alternative. This method cranks up the engine in windowed mode without querying the user
for his wishes.

About Swap Chains

Let’s reveal the magic of how you can render to multiple child windows using Direct3D.
It’s not that difficult. The Direct3D device uses so-called swap chains for this purpose. You
say you’ve never heard of these? If you ever used Direct3D before, then you have actually
used a swap chain.

Basically, a swap chain is nothing more than one or more back buffers. The standard
Direct3D device has at least one built-in render target—the front buffer. If you use a back
buffer, then you suddenly end up with two buffers you can render to that are swapped
automatically if you call the IDirect3DDevice::Present function. There it is, the implic-
itly existing swap chain of the Direct3D device. The device simply cannot exist without a
swap chain.

Now you can add as many swap chains as you like if you have enough memory. In the pre-
vious listing, you saw the function that can do exactly this, creating a swap chain and
adding it to the device: IDirect3DDevice::CreateAdditionalSwapChain. As parameters
you need to provide only the Direct3D present parameters structure and a pointer of the
interface type IDirect3DSwapChain9.

Chapter 3 ■ Engineering the Engine76

CH03_p.041-090.qxd 6/1/04 2:39 PM Page 76

I don’t want to go into detailed descriptions here of how to use Direct3D interfaces, as it
is not the topic of this book. However, I will point out all the functions you need to deal
with those swap chains and let you explore in the DirectX SDK reference whatever you
cannot grasp from my explanations. What I show you here is more than enough to get a
grip on those swap chains.

After creating a new swap chain, which is connected to another window over the window han-
dle you put into the present parameters structure, you can later change the active swap chain
if you want to use another child window to render into. Next, I show you how to do this.

Changing between Child Views
Let’s suppose the user provided an array of window handles to the ZFXRenderDevice::Init
call because he wants to use multiple child views to render into. You have to make your
engine capable of switching to any of those child windows whenever the user wants you
to. To do this is actually quite easy, but there are some nasty details connected to it. Each
time you render something to Direct3D, the pixel output is rendered onto what is called
a render target. The back buffer is such a render target, but a texture could be a render tar-
get as well. I told you that a swap chain is basically nothing more than a separate back
buffer, so the only thing you need to do is change the render target to a swap chain’s back
buffer if you want to render to another child window.

And that sounds even more complicated than it is. You have to pick the swap chain object
and retrieve its back buffer object as a Direct3D surface object. The following function lets
you do this: IDirect3DSwapChain9::GetBackBuffer. It awaits three parameters. First, it
waits for the index of the back buffer, as there could be more than one. Second, it waits
for the flag D3DBACKBUFFER_TYPE_MONO. In a later version of DirectX, there might be a sup-
port for stereo rendering, but for now there is only the flag I mentioned. The third para-
meter is a pointer to a Direct3D surface to be filled with the back buffer you requested.

After you get what you came for, you can set this surface as a render target for the
Direct3D device. Voilá, you successfully changed the active swap chain of the device to
another one. This means that until the next switch, Direct3D will render into the window
connected with the swap chain that is now active.

It is that simple. The following function takes care of doing this job:

HRESULT ZFXD3D::UseWindow(UINT nHwnd)
{
LPDIRECT3DSURFACE9 pBack=NULL;

if (!m_d3dpp.Windowed)
return ZFX_OK;

else if (nHwnd >= m_nNumhWnd)

Implementing the DLL 77

CH03_p.041-090.qxd 6/1/04 2:39 PM Page 77

return ZFX_FAIL;

// try to get the appropriate back buffer
if (FAILED(m_pChain[nHwnd]->GetBackBuffer(0,

D3DBACKBUFFER_TYPE_MONO,
&pBack)))

return ZFX_FAIL;

// and activate it for the device
m_pDevice->SetRenderTarget(0, pBack);
pBack->Release();
m_nActivehWnd = nHwnd;
return ZFX_OK;
}

C a u t i o n

Things are never easy. There is a slight catch concerning the change of a render target. The depth-
stencil surface attached to the Direct3D device must not be smaller than the dimensions of the ren-
der target. Otherwise the whole screen will look pretty messed up. To keep things simple, I use the
desktop size for the implicit Direct3D swap chain, and it will also be taken for the depth-stencil sur-
face.You can also create a depth-stencil surface for each render target and change the depth-stencil
surface if you change the render target.

We have completed the initialization stuff. Our engine is now able to initialize Direct3D
in a comfortable way. You can also fire up a lot of child windows you might want to ren-
der into, and you can switch the active window in the blink of an eye.

Figure 3.2 shows you what the final demo in this chapter looks like. This is nothing spec-
tacular at all. There is, however, a lot going on behind the scenes, as you learned in this
chapter. The figure shows the engine running in windowed mode with four child win-
dows. We are not yet able to render anything but we can already clear the client area of all
the child windows, as you will see in a moment.

If you select fullscreen mode in the dialog during the startup phase of the engine, the
engine is smart enough to ignore the list of child windows and use the main application
window handle instead. It will also block the calls to ZFXD3D::UseWindow without an error.
This way you cannot mess up the engine by making a wrong call. This intelligent logic sits
inside the ZFXD3D::Init and ZFXD3D::UseWindow functions, as you might have noticed.

There are still some pieces missing from the puzzle. We have not yet implemented the last
few functions the ZFXRenderDevice interface wants us to implement. These are the topic
of the next section.

Chapter 3 ■ Engineering the Engine78

CH03_p.041-090.qxd 6/1/04 2:39 PM Page 78

Render Functions
We did it. We initialized the render device that sits inside the DLL, and we used Direct3D.
We can also release it and just clean up after our party. This does not take us anywhere if
we cannot do anything at all between its initialization and its release. However, the main
purpose of a render device should be to render something.

I guess you already have a lot to consider from this chapter and I don’t want to throw a lot
more on you. You will soon see that rendering is not very easy if you want to do it right
and encapsulate it comfortably in an engine.

However, I can’t just let you initialize and destroy render devices without seeing anything
on your screen. Therefore, I will include the basic functionality to clear the screen using
the render device. Take a look at the following interface functions or, better, at how they
are now implemented in the ZFXD3D class using Direct3D.

HRESULT ZFXD3D::BeginRendering(bool bClearPixel,
bool bClearDepth,
bool bClearStencil)

{
DWORD dw=0;

// anything to be cleared?
if (bClearPixel || bClearDepth || bClearStencil)

{

Implementing the DLL 79

Figure 3.2 The engine running in windowed mode featuring four child windows

CH03_p.041-090.qxd 6/1/04 2:39 PM Page 79

if (bClearPixel) dw |= D3DCLEAR_TARGET;
if (bClearDepth) dw |= D3DCLEAR_ZBUFFER;

if (bClearStencil && m_bStencil)
dw |= D3DCLEAR_STENCIL;

if (FAILED(m_pDevice->Clear(0, NULL, dw,
m_ClearColor,
1.0f, 0)))

return ZFX_FAIL;
}

if (FAILED(m_pDevice->BeginScene()))
return ZFX_FAIL;

m_bIsSceneRunning = true;
return ZFX_OK;
} // BeginRendering

/*——————————————————————————*/

HRESULT ZFXD3D::Clear(bool bClearPixel,
bool bClearDepth,
bool bClearStencil)

{
DWORD dw=0;

if (bClearPixel) dw |= D3DCLEAR_TARGET;
if (bClearDepth) dw |= D3DCLEAR_ZBUFFER;

if (bClearStencil && m_bStencil)
dw |= D3DCLEAR_STENCIL;

if (m_bIsSceneRunning)
m_pDevice->EndScene();

if (FAILED(m_pDevice->Clear(0, NULL, dw,
m_ClearColor,
1.0f, 0)))

return ZFX_FAIL;

if (m_bIsSceneRunning)

Chapter 3 ■ Engineering the Engine80

CH03_p.041-090.qxd 6/1/04 2:39 PM Page 80

m_pDevice->BeginScene();
} // Clear

/*——————————————————————————*/

void ZFXD3D::EndRendering(void)
{
m_pDevice->EndScene();
m_pDevice->Present(NULL, NULL, NULL, NULL);
m_bIsSceneRunning = false;
} // EndRendering

/*——————————————————————————*/

void ZFXD3D::SetClearColor(float fRed,
float fGreen,
float fBlue)

{
m_ClearColor = D3DCOLOR_COLORVALUE(fRed,

fGreen,
fBlue,
1.0f);

} // SetClearColor
/*——————————————————————————*/

Before you can render, you have to begin the scene, as Direct3D calls it. Each API uses
naming conventions as it likes and so I called this one BeginRendering(), which looks
more native to me and more or less explains itself. (Try to explain to someone what
exactly a scene is and why you have to begin a scene.) This step itself is necessary to
instruct the video adapter to prepare for rendering.

You have to provide three parameters of type bool to control which buffers will be cleared
before you begin rendering. You will almost always want to wipe out the depth buffer—
but only if you use one. The same applies for the stencil buffer. Ever tried to do a clear on
a nonexistent depth or stencil buffer? Direct3D shows you some nice blinking colors if
you do this.

Things get looser with the pixel buffer. It makes sense to clear the pixel buffer each frame;
however, if you know you will render each pixel of the pixel buffer in the new frame, there
is no need to clear the pixel buffer because its contents will be overwritten anyway.
Therefore, it can save you time and an expensive fill rate if you can save yourself from
clearing that buffer.

Implementing the DLL 81

CH03_p.041-090.qxd 6/1/04 2:39 PM Page 81

N o t e

In computer graphics, you encounter a lot of terms that mean the same thing. Or to put it the other
way around, you find a lot of different terms describing the same object or concept. Roughly speak-
ing, a pixel buffer is the same thing as back buffer–front buffer, frame buffer, or just render target.

The remaining functions are self-explanatory. A separate function does a clear without
beginning a scene. You need that for some effects, such as when you have to clear buffers
during a scene. If the engine sees that the scene is currently running, it will stop the scene,
clear, and then start the scene again but without calling the IDirect3DDevice9::Present
function from Direct3D.

This is done only when you explicitly end the rendering for the engine. Please note that you
must not call IDirect3DDevice9::Present more than once for a swap chain per frame.
Otherwise, Direct3D will thank you with its nice blinking colors or a messed up screen.

You are now truly, truly done with the implementation issues of this chapter. This I
promise you. Both projects are complete and you have only to see the code that is needed
to make a test run of your brand new, small but fine engine.

Testing the Implementation
Most of us have already worked with a 3D API, at least enough to know that it is a whole
lot of work to crank up such an API, to keep an eye on errors that could occur, select
screen modes, and so on. Those are the nasty things we locked away deep inside the DLL
that implements the render device interface. As you will see, the more code we can
abstract away from an application because of low-standard encapsulation work, the bet-
ter it is and the shorter the source code of an application using the engine naturally gets.

If you would be so kind now, open a new project in Visual C++ as a Win32 Application
and call it Demo or whatever you want it to be called. Please don’t use animal names.

You already know how to create a new project and add new empty files to it; therefore,
insert main.cpp and main.h into the project. To eliminate some batch file work and even
more Visual C++ settings, copy the files the demo project needs to use from the
ZFXRenderer directory and the subdirectories that contain the static library implementa-
tion and the compiled library itself.

It would be easier to use batch files called in the post-build step to copy these files and to
give path names to the IDE (Integrated Development Environment) so that it can find the
directories for itself. However, you then need to know your way around in Visual C++, so
just copy the following files into the directory of your Demo project space:

■ ZFXRenderer.h

■ ZFXRenderDevice.h

Chapter 3 ■ Engineering the Engine82

CH03_p.041-090.qxd 6/1/04 2:39 PM Page 82

■ ZFXRenderer.lib

■ ZFXD3D.dll

With this completed, you can start coding. You will need only four short functions. One
of them naturally needs to be the WinMain() function, which is accompanied by a message
procedure callback. The other two functions necessary for internal organization in the
code are the function for initialization of the engine and the function to shut it down.

Here I list for you the program as I implemented it. Object-oriented programmers might
call this a mess, but then it is only a demo and it is meant to be simple and to the point
without creating a smart class encapsulation with the Windows API and without the cool
design stuff. Following is the code:

//
// FILE: main.h
LRESULT WINAPI MsgProc(HWND, UINT, WPARAM, LPARAM);
HRESULT ProgramStartup(char *chAPI);
HRESULT ProgramCleanup(void);
//

//

// FILE: main.cpp

#define WIN32_MEAN_AND_LEAN

#include “ZFXRenderer.h” // the interface
#include “ZFX.h” // return values
#include “main.h” // prototypes

// link the static library
#pragma comment(lib, “ZFXRenderer.lib”)

// Windows stuff
HWND g_hWnd = NULL;
HINSTANCE g_hInst = NULL;
TCHAR g_szAppClass[] = TEXT(“FrameWorktest”);

// application stuff
BOOL g_bIsActive = FALSE;
bool g_bDone = false;
FILE *pLog = NULL;

Testing the Implementation 83

CH03_p.041-090.qxd 6/1/04 2:39 PM Page 83

// zfx objects
LPZFXRENDERER g_pRenderer = NULL;
LPZFXRENDERDEVICE g_pDevice = NULL;

/**
* WinMain entry point
*/

int WINAPI WinMain(HINSTANCE hInst,
HINSTANCE hPrevInstance,
LPSTR lpCmdLine, int nCmdShow)

{
WNDCLASSEX wndclass;
HRESULT hr;
HWND hWnd;
MSG msg;

// initialize the window
wndclass.hIconSm = LoadIcon(NULL,IDI_APPLICATION);
wndclass.hIcon = LoadIcon(NULL,IDI_APPLICATION);
wndclass.cbSize = sizeof(wndclass);
wndclass.lpfnWndProc = MsgProc;
wndclass.cbClsExtra = 0;
wndclass.cbWndExtra = 0;
wndclass.hInstance = hInst;
wndclass.hCursor = LoadCursor(NULL, IDC_ARROW);
wndclass.hbrBackground = (HBRUSH)(COLOR_WINDOW);
wndclass.lpszMenuName = NULL;
wndclass.lpszClassName = g_szAppClass;
wndclass.style = CS_HREDRAW | CS_VREDRAW |

CS_OWNDC | CS_DBLCLKS;

if (RegisterClassEx(&wndclass) == 0)
return 0;

if (!(hWnd = CreateWindowEx(NULL, g_szAppClass,
“Crancking up ZFXEngine...”,
WS_OVERLAPPEDWINDOW | WS_VISIBLE,
GetSystemMetrics(SM_CXSCREEN)/2 -190,
GetSystemMetrics(SM_CYSCREEN)/2 -140,
380, 280, NULL, NULL, hInst, NULL)))

Chapter 3 ■ Engineering the Engine84

CH03_p.041-090.qxd 6/1/04 2:39 PM Page 84

return 0;

g_hWnd = hWnd;
g_hInst = hInst;

pLog = fopen(“log_main.txt”, “w”);

// start the engine
if (FAILED(hr = ProgramStartup(“Direct3D”)))

{
fprintf(pLog, “error: ProgramStartup() failed\n”);
g_bDone = true;
}

else if (hr == ZFX_CANCELED)
{
fprintf(pLog, “ProgramStartup() canceled\n”);
g_bDone = true;
}

else
g_pDevice->SetClearColor(0.1f, 0.3f, 0.1f);

while (!g_bDone)
{
while(PeekMessage(&msg, NULL, 0, 0, PM_REMOVE))

{
TranslateMessage(&msg);
DispatchMessage(&msg);
}

if (g_bIsActive)
{
if (g_pDevice->IsRunning())

{
g_pDevice->BeginRendering(true,true,true);
g_pDevice->EndRendering();
}

}
}

// cleanup
ProgramCleanup();

Testing the Implementation 85

CH03_p.041-090.qxd 6/1/04 2:39 PM Page 85

UnregisterClass(g_szAppClass, hInst);
return (int)msg.wParam;
} // WinMain

/*——————————————————————————*/

/**
* MsgProc to proceed Windows messages.
*/

LRESULT WINAPI MsgProc(HWND hWnd, UINT msg,
WPARAM wParam,
LPARAM lParam)

{
switch(msg)

{
// application focus
case WM_ACTIVATE:

{
g_bIsActive = (BOOL)wParam;
} break;

// key events
case WM_KEYDOWN:

{
switch (wParam)

{
case VK_ESCAPE:

{
g_bDone = true;
PostMessage(hWnd, WM_CLOSE, 0, 0);
return 0;
} break;

}
} break;

// destroy window
case WM_DESTROY:

{
g_bDone = true;
PostQuitMessage(0);
return 1;
} break;

Chapter 3 ■ Engineering the Engine86

CH03_p.041-090.qxd 6/1/04 2:39 PM Page 86

default: break;
}

return DefWindowProc(hWnd, msg, wParam, lParam);
}

/*——————————————————————————*/

/**
* Create the render device object.
*/

HRESULT ProgramStartup(char *chAPI)
{
HWND hWnd3D[4];
RECT rcWnd;
int x=0,y=0;

// we don’t have OpenGl at all :)
if (strcmp(chAPI, “OpenGL”)==0) return S_OK;

// create the renderer object
g_pRenderer = new ZFXRenderer(g_hInst);

// create the render device
if (FAILED(g_pRenderer->CreateDevice(chAPI)))

return E_FAIL;

// save pointer to the render device
g_pDevice = g_pRenderer->GetDevice();
if(g_pDevice == NULL) return E_FAIL;

// query client area size
GetClientRect(g_hWnd, &rcWnd);

for (int i=0; i<4; i++) {
if ((i==0) || (i==2)) x = 10;
else x = rcWnd.right/2 + 10;

if ((i==0) || (i==1)) y = 10;
else y = rcWnd.bottom/2 + 10;

hWnd3D[i] = CreateWindowEx(WS_EX_CLIENTEDGE,

Testing the Implementation 87

CH03_p.041-090.qxd 6/1/04 2:39 PM Page 87

TEXT(“static”), NULL, WS_CHILD |
SS_BLACKRECT | WS_VISIBLE, x, y,
rcWnd.right/2-20, rcWnd.bottom/2-20,
g_hWnd, NULL, g_hInst, NULL);

}

// initialize render device (show dialog box))
return g_pDevice->Init(g_hWnd, // main window

hWnd3D, // child windows
4, // 4 children
16, // 16 bit Z-Buffer
0, // 0 bit Stencil
false);

} // ProgramStartup
/*——————————————————————————*/

/**
* Free allocated resources.
*/

HRESULT ProgramCleanup(void)
{
if (g_pRenderer)

{
delete g_pRenderer;
g_pRenderer = NULL;
}

if (pLog) {
fclose(pLog);
pLog = NULL;
}

return S_OK;
} // ProgramCleanup

/*——————————————————————————*/

What you see here is nothing more than a typical Windows application that opens up one
window to start and provides a message pump to process the messages the operation sys-
tem throws in your direction. There is a little more going on here. This is what sits inside
the ProgramStartup() function and involves initializing the basic engine.

First, I get an instance from the ZFXRenderer class, which is the static library used to load
a DLL that implements the render device interface ZFXRenderDevice. Then I call the

Chapter 3 ■ Engineering the Engine88

CH03_p.041-090.qxd 6/1/04 2:39 PM Page 88

ZFXRenderer::CreateDevice function, which initializes the render device and brings up a
dialog in which you can select the settings to run the application in.

In the ProgramStartup() function you can also see some weird code that creates four child
windows, which are distributed evenly inside the main window’s client area. The handles
of these windows are given to the initialization function, and if the user selects that he
wants to run the engine in windowed mode, you will see the four child windows you can
render into just as you saw in Figure 3.2. If the user selects fullscreen mode then it doesn’t
matter that you hand over the child window handles to the engine. They will get ignored.

To end the program you can either hit the Escape key or use the window termination sym-
bol from the window’s caption bar in windowed mode.

One Look Back, Two Steps Forward
This chapter served as a refresher on several topics. You revisited some of the basic program-
ming skills, but you should have learned a lot of new things, namely interfaces and DLLs.
Using these two concepts or techniques, you are now able to encapsulate an API and hide its
usage deep inside a library. I showed you how you can apply these methods and build a
generic engine as an intermediary between a low-level API and the high-level game code.

If you end up writing all API-related stuff right into the game code or use API-dependent
calls inside the game code, you will find yourself in a dead end one day. Even a simple
switch to the next version of an API you use inside your game code would mess things up,
as you would have to write the whole game code from scratch. Don’t even try to just
rewrite this and that over here and over there. It would just make things worse.

If you cleanly separate your game code from all API-dependent code using a mid-level
engine, encapsulating an API, and hiding it totally to outsiders, everything will be okay.
You just need to rewrite the engine, leaving the calling methods untouched. Then you do
not need to change the game code. It will work with the new API version as soon as the
engine is wrapped around this new version.

Another point that might be new to you is the flexible handling of multiple child windows.
This enables you to build tools using typical level-editor-style front, side, top and perspective
views, as well as a separate view for a material editor and stuff like that. We will revisit this
flexibility again when we add the option for multiple viewports inside these child windows
in Chapter 6, “The Render Device of the Engine.” A viewport is basically a window inside a
window; however, the difference is that it is not a real Windows window.

You should now have a fully functionally workspace with two projects that are the kickoff
for a simple engine. Nothing will stop us from expanding that basic framework into a
comprehensive engine.

One Look Back, Two Steps Forward 89

CH03_p.041-090.qxd 6/1/04 2:39 PM Page 89

The next chapter deals with some other basics you will hate at first, but you will learn to
love later on. Trust me. Put on your helmet, soldier, and take point. If you encounter math
problems, then fire for effect.

Chapter 3 ■ Engineering the Engine90

CH03_p.041-090.qxd 6/1/04 2:39 PM Page 90

