
CHAPTER 8

Advanced
Timing and

Trigonometry:
Blow ‘Em Up

We’ve come a long way in our pursuit of games in Flash. We’ve covered the bulk of
the ActionScript language and seen the implementation of increasingly complex

games. Most of our focus from this point on will be on topics that are not directly related to
Flash, but to game programming in general.

This chapter takes on two important subjects. First, we will be going back to the subject of
timing and finishing what we began in Chapter 7, “Real-Time Programming: Shoot ‘Em Up.”
We’ll investigate the ways we can free our game’s behavior from the given frame rate. From
there, we’ll look at the subject of trigonometry. Although we won’t have a chance to cover
the topic completely, we’ll look at enough theory to be able to handle angles in our games.

Advanced Timing
I’ve been talking about it for quite a while now, and it’s finally time to delve into some
advanced timing concepts. It mainly boils down to creating a game engine that functions
independently of the movie’s set frame rate. Changes to the actual frame rate of the game
should have little or no effect on the speed that things move in our games.

In the past, our games have relied on an onEnterFrame handler to do the work each frame.
Inside that handler, we call functions to update the player, update the opponents, handle
collisions, and so on. To free the game from the frame rate, we must get rid of onEnterFame.
By moving beyond onEnterFrame, we are able to have elements of our game process at dif-
ferent rates based on the priority of the game element. With onEnterFrame, you are tied to
the frame rate of the movie.

The technique we’ve used to run code constantly has been to attach a function such as
playGame to the _root’s onEnterFrame handler. We’re going to change this by setting an inter-
val to call playGame instead.

Doing this has a major impact on how things work for Flash. Flash renders to the screen
(refreshes the screen with updated information) between each frame. If we update the posi-
tion of a clip based on an interval, the position is updated every x milliseconds. The screen
is then drawn based on the fps, but the movement of objects is based on a fixed timer.

It’s important to understand that one of the things that causes Flash to bog down is moving
lots of clips on the screen. The rendering takes a long time. The updating of the player and
the bad guys is relatively fast compared to the time it takes Flash to compute what the
screen is going to look like after the update.

428 8. Advanced Timing and Trigonometry

When we use a timer to update the game’s data, we free it from the frame rate of the system
it’s playing on. This makes the graphics choppy on a slow system, but things still move at
close to the same speed that they would on a fast computer. The difference is that the
graphics on the fast computer are smoother because Flash has more spare time to spend
rendering more scenes (higher fps). This is a huge improvement over our old games, which
caused the entire game to slow down when they were run on a slow computer.

That’s basically all there is to it. We use an interval to update our game data instead of
updating it every frame with onEnterFrame.

We can take it one step further, though.
Consider this: You have one function to
update the player; one function to update
his opponents; one function to update bul-
lets, missiles, and other projectiles; and so
on. Each of those functions can be given to
its own interval, with its own millisecond
trigger. That means you can customize the
frequency of updates between different
objects in the game. The user is always most
focused on his own object, so you should
update that the most often. Some of the
lesser objects can update less frequently, sav-
ing precious CPU. And changing these mil-
lisecond triggers is as easy as changing a
constant. We’ll see this technique used in
this chapter’s game, of course.

Now that I’ve explained how intervals work, let’s cook up a bit of code. I prefer to look at
code when I’m learning a new language, so I won’t leave this topic without some:

playerTick = 30;
opponentTick = 60;
missileTick = 75;
function updatePlayer(){/*update the player’s object*/}
function updateOpponent(){/*update the player’s object*/}
function updateMissiles(){/*update the missile object’s*/}
setInterval(updatePlayer, playerTick);
setInterval(updateOpponent, opponentTick);
setInterval(updateMissiles, missileTick);

As you can see, we’re declaring three constants, each with the suffix Tick. These constants
indicate the number of milliseconds between updates to their respective objects, player, oppo-
nent, and missiles. Then we declare three update functions—one for each object type. Finally,
we set intervals for each, using the update function and millisecond constant for each.

You might be thinking, “Hey, the opponent would update half as often, so wouldn’t it move
half as fast?” And the answer would be “Yes, it would.” To counterbalance this, we use a
speed variable. We set the speed of the opponent to be twice as much as the speed of the

429Advanced Timing

TIP
You could go even one step further,
although we won’t do it in this book.
You could have a function that moni-
tors the current frame rate and
reduces the update timers for less
important game objects.This would
allow you to give optimum perfor-
mance on fast systems while degrad-
ing only as much as necessary on
slower systems, all computed at run-
time with ActionScript.

player. Then when the update function
moves the opponent, the opponent is
moved twice as far. The opponent will, of
course, be moved only half as often. The
net result is identical movement between
the player and his opponent.

That basically concludes our discussion of
timing. It does leave us at an interesting
intersection, though. We’re talking about
moving things around the stage in time,
free of the frame rate. While we’re on the
subject of freeing things, we should talk
about how to move objects freely about
the stage.

The Problem
of Movement
Remember the game Mouse Chaser from
Chapter 3? The bat moved after the mouse
pointer, but it did it by moving only horizon-
tally, vertically, and diagonally. What if we wanted the bat to move toward the mouse directly
(in a straight line)? How could we do that?

Essentially, we need to look at where we are, where we want to go, and how fast we’re going.
From that, we can determine how much we need to change our _x and _y properties to give
us the correct step forward.

For determining those changes _x and _y, we have two choices: We can use trigonometric
functions (arctangent in particular), or we can use vectors. Vectors are a way of represent-
ing lines of force. By using Vector transformations, you can do some interesting things
while not using computationally expensive math functions. Although vectors will end up
saving us some math calls, they can be conceptually difficult to grasp. As such, we’re going
wait to talk about vectors specifically in Chapter 11, “Physics: Pachinko.” In this chapter, we
are going to look at a purely algebraic solution. We’ll be focused mainly of the trigonomet-
ric solutions to movement and rotation in this chapter.

Trigonometry
Trigonometry is the study of triangles. I’m sure you know what a triangle is, so I’m not going
to get medieval and start defining things from ground 0. Instead, I want to start by looking
at a special kind of triangle that we all know and love: the right triangle.

430 8. Advanced Timing and Trigonometry

TIP
Instead of doubling the speed of the
opponent when you cut its interval,
you could always set up a rate that is
based on the interval. Let’s say that
the opponent should move 10 pixels
every second no matter how often
the interval runs.You could set
speed to be a function of the inter-
val. In this case, speed would be 10
times the interval (in milliseconds)
divided by 1000 milliseconds (one
second). By setting up speed in rela-
tionship to the interval, you can set
all the speeds for all the characters
based on a common system, which
allows for much better code read-
ability and less headache later.

A Right Triangle
A right triangle is defined as any triangle that has one right angle. A right angle is defined as
an angle of exactly 90 degrees. When drawn on paper, a right triangle is denoted by a small
square in the corner that is a right angle (90 degrees). Figure 8.1 shows a few right triangles
with their right angles marked.

Triangles are divided into sides and angles, and every triangle has three of each. The side
that opposes the right angle is called the hypotenuse of the right triangle. The two remaining
sides are sometimes called legs. It is customary to give letters to the sides of a triangle for
notational sake. Typically, the legs are labeled a and b and the hypotenuse is labeled c, as
shown in Figure 8.2. Further, the angles are typically labeled A, B, and C, and the label of
each angle corresponds to the side that it opposes. Therefore, angle C is the right angle
because it opposes the hypotenuse (side c). This is true of angle A and side a, as well as
angle B and side b. Refer to Figure 8.2.

431The Problem of Movement

Figure 8.1

A few right triangles with
their right angles marked.

Figure 8.2

A right triangle has its legs labeled a and b and its
hypotenuse labeled c.The angles are labeled A, B, and C.

Right triangles have some special properties because one angle is fixed at 90 degrees. In
fact, all of trigonometry is based on the relation of the lengths of the sides of a triangle to
the measure of the angles formed by those sides.

The Pythagorean Theorem
Pythagoras, a 6th century philosopher and mathematician, discovered that the length of the
hypotenuse of a right triangle, when squared, is equal to the sum of the squares of the legs.
That sounds complex, but it really isn’t. Consider the following equation, which defines
what Pythagoras is talking about:

a2 + b2 = c2

The idea is that the length of the hypotenuse (c), when squared (c2), is equal to the sum of
the squares of the sides (a2 + b2).

This equation is known as the Pythagorean Theorem. It has many uses, including being able to
find the distance between two points, given their coordinates.

The Distance Formula
Consider Figure 8.3, which shows two points on the stage. The stage is a Cartesian plane,
much like you learned about in geometry class with an X and a Y axis.

We can now draw a right triangle between the two points, as shown in Figure 8.4.

432 8. Advanced Timing and Trigonometry

Figure 8.3

We want to find the distance between two points, A
and B.

As you can see, we’ve constructed our triangle so that the hypotenuse is the line from point
A to point B. Now we can use the Pythagorean Theorem to determine the length of this
hypotenuse, which will be the same as the distance between the points.

If you look at the triangle in Figure 8.4, you can see that the length of the bottom leg (side
a) can be found by subtracting the x coordinate of point A from the x coordinate of point
B. That gives us the length of the first leg (side b). The second leg (side a) is found by tak-
ing the difference of the y coordinates of point B and A. The following equations give us
the exact lengths of the legs:

If we now plug these for a and b in the
Pythagorean Theorem, we get the following
equation:

Finally, we can take the square root of both sides to solve for the variable c, leaving us with
the distance equation:

433The Problem of Movement

Figure 8.4

We draw a right triangle between
the points A and B.The sides
opposite points A and B are labeled
a and b.

NOTE
Please note that when referring to
the coordinates of a point, I use a
subscript x and subscript y for the
respective points. In other words, if I
have a point A(4,5), then Ax would be
4 and Ay would be 5.

If I were to tell you that the actual coordinates of point A were (4, 6) and the actual coordi-
nates of point B were (6, 8), you could plug these values into the preceding equation to
produce the following:

Now let’s solve this equation by doing the work to get a numerical value for c:

And as you can see, the actual distance between the points A(4, 6) and B(6,8) is 2.8284.

Therefore, this new formula can give us the distance between any two points if we know
their coordinates. Let’s implement this in Flash now, while we’re looking at it.

Implementing the Distance Formula
in Flash
We already know the distance formula. Implementing the formula in Flash amounts to cre-
ating a function that takes two objects (movie clips usually) as arguments and returns the
distance between them. Consider the following:

function dist(obj1,obj2){
return Math.sqrt(Math.pow(obj1._x-obj2._x, 2) + Math.pow(obj1._y-obj2._y, 2));

}

Now we can instantly find the distance between any two objects that have the _x and _y
properties defined.

434 8. Advanced Timing and Trigonometry

Relative Distance and the Improved
Distance Formula
Now that we have the distance formula figured out, it’s time to change it. I’ve mentioned
before how important it is to make your script efficient so that your games play smoothly.
Well, here in our implementation of the distance formula, we have an opportunity to
improve things.

As an example, let’s say that we have an object on the stage and we want to know when the
mouse comes within a certain distance of the object. This kind of setup is called a bounding
circle because we use a circular boundary around the object to hit test against.

The circle, shown in Figure 8.5, has its radius labeled. The radius is the distance from the
center of the circle to its edge. If the distance from the mouse to the center of the circle
becomes less than the radius of the circle, the mouse is inside it.

To solve this problem, we could simply create an onEnterFrame handler that checks the dis-
tance from the mouse to the circle’s center. If this distance becomes less than the radius of
the circle, we know there is a hit. Let’s take a look at what that might look like in code.

First assume a new Flash movie with a circle in the library. The circle’s registration point is
at the center of the circle:

attachMovie(“circle”,”circle”,1);
circle.radius = circle._width/2;
circle.onEnterFrame = function(){

obj=new Object();

435The Problem of Movement

Figure 8.5

The point B is inside a bounding circle.

obj._x = _xmouse;
obj._y = _ymouse;
if(dist(obj, circle) < circle.radius)

trace(“hit!!”);
}
//add distance equation here

This example works because for each frame, the distance formula is called and the distance
from the mouse to the circle is compared with the circle radius. That’s great, but where is
the room for improvement?

The improvement comes from the distance formula. The last thing the function does
before returning its value is to take the square root. That’s an expensive operation in terms
of CPU, and doing one every frame is hardly efficient. After you’ve added many clips to the
stage, each taking one square root every frame, you have a lot of work going on to calculate
them. If you had no other choice, you would have to take the square root and live with it.
But the fact is, you do have a choice.

What would happen if, when we set the radius for the circle, we squared the actual radius?
That would mean that the radius that Flash would be working with would be the square of
the actual radius. Now when we perform the comparison with the distance from the mouse
to the center of the circle, we can leave off that final square root. In other words, we would
compare the square of the distance to the square of the radius. The result is identical to
what we did earlier: a bounding circle hit test.

We need to add a call to Math.pow to square the radius when we set it. Notice that is done
only once the entire time the program runs. In exchange, we can omit the Math.sqrt call in
the distance formula, which was called once every frame. Nice tradeoff, eh?

To make things clear and reusable, I define a new function called dist2, which is equivalent
to the distance squared. Then I redefine the old dist function to take advantage of the new
dist2 function:

function dist2(obj1,obj2){
//distance formula without the square root
return Math.pow(obj1._x-obj2._x, 2) + Math.pow(obj1._y-obj2._y, 2)

}
function dist(obj1,obj2){

//square root of distance squared gives distance
return Math.sqrt(dist2(obj1,obj2));

}

Sometimes you need the exact distance, but for the most part, this new dist2 function
works perfectly. Consider the following upgrade to the previous example:

attachMovie(“circle”,”circle”,1);
circle.radius = Math.pow(circle._width/2, 2);
circle.onEnterFrame = function(){

obj=new Object();

436 8. Advanced Timing and Trigonometry

obj._x = _xmouse;
obj._y = _ymouse;
if(dist2(obj, circle) < circle.radius)

trace(“hit!!”);
}

The Problem of Movement Revisited
Now that we have the distance formula under our belts, we can look again at the subject of
moving things around on the stage in any direction we want with a fixed speed (distance
moved per frame or per second).

Using some algebra, the distance formula, and your thinking cap, you might already be
able to see how this is possible. Let me explain. Let’s say that we want our circle to move 5
pixels closer to the mouse every frame. Let the circle be point B and the mouse be point A
from Figure 8.5.

If the distance is 20 pixels apart, we know that the ratio of the required distance to the
actual distance is 5 to 20. (We want to move at a rate of 5, the distance is currently 20, so
our ratio is 5:20, or 1:4.) Now think of this movement as the hypotenuse of a right triangle.
The other two sides are the horizontal and vertical components of the movement.

If we scaled the hypotenuse of a right triangle down from 20 pixels to 5 pixels by dividing
by 4, the other two sides of the triangle have to be scaled by the same amount to keep the
triangle looking like a smaller version of the old triangle. Therefore, all we would have to
do is divide the other two sides by 4 to get the length of their sides. Because these sides cor-
respond to the X and Y distance, we now have the X and Y constituent values for moving 5
pixels in the specified direction. Look at Figure 8.6 to see what I mean.

437The Problem of Movement

Figure 8.6

The ratio of the
required distance and
the actual distance is
the same as the ratio
between the required
change in x and the
actual change in x.

Because the two ratios are the same (equal), we can create an equation for them, as follows:

And conveniently, we know three of those fields already. The only thing we don’t know is
the required change in x. Because the other three values are known, we can plug them in
and solve for the unknown. Let’s rewrite the equation using everything we know:

In this equation, speed is the distance we want to travel each step (frame). This is divided
by the distance from A to B. That ratio is set equal to the ratio between delta x (our
unknown change in x) and the difference in x values between the two objects. Let’s write
the equation solved for delta x to be explicit:

We can construct the same equation for y:

Therefore, to find the required change in x and y, we would plug in the values we know
and solve for delta x and delta y. Those changes would then be applied to the coordinates
of point B (the one we want to move).

That’s a good bit of algebra, so I want to solidify with some script examples now. Let’s go
back and fix the Mouse Chaser game so that the bat chases the mouse in a direct line. In that
game, we had a function called moveBat that handled the bat’s movement. If we remove that
function and replace it with a new function, based on the algebra we’ve been doing, the
new bat should move correctly and everything will be groovy. First let’s look at the old
moveBat function:

function moveBat(){
caughtMouse = false;
//move bat horizontally
if(bat._x < _root._xmouse - speed)bat._x += speed;

438 8. Advanced Timing and Trigonometry

else if(bat._x > _root._xmouse + speed)bat._x -= speed;
else caughtMouse = true;
//move back vertically
if(bat._y < _root._ymouse - speed)bat._y += speed;
else if(bat._y > _root._ymouse + speed)bat._y -= speed;
else if(caughtMouse == true)resetGame();

}

Now let’s use our triangle to make sure we know what’s going on. Look at Figure 8.7.

Now it’s time to implement, based on our preceding equations and our new triangle
drawing:

function moveBat(){
var p = new Object();
p._x = _xmouse; p._y = _ymouse;
var d = dist(p,bat);
if(d < speed){

resetGame();
return;

}
bat._x += ((_xmouse - bat._x)*speed)/d;
bat._y += ((_ymouse - bat._y)*speed)/d;

}

The new function begins by setting up an object called p that contains _x and _y properties
so that it can be used with our dist function, which is then called on p and bat. If this dis-
tance is smaller than the speed, the mouse has been caught and we can reset the game and
return from the function. If the distance is larger than the speed, we update the bat’s posi-
tion by adding the delta x and delta y values, which are the result of the implementation of
our previous equations. I have placed a file called mouse chaser improved.fla in the
Chapter 8 directory of the CD. This file contains the new-and-improved moveBat function.

439The Problem of Movement

Figure 8.7

We create a right triangle between the bat
and the mouse so that we can compute the
bat’s new coordinates.

Rotation
Now that we have the ability to move things around the stage in any direction, we need to
talk about a related issue. Say that we’re making a tank game, and the opponent tank’s gun
turret rotates to follow the player at all times. We know how to move the opponent’s tank
toward the player, but how can we rotate something so that it always faces the player?

The answer lies in the trigonometric functions sine, cosine, and tangent. These three func-
tions are used to relate the lengths of the sides of a triangle to the angles formed by the
sides. Because we know where the opponent’s tank is and we know where the player’s tank
is, we can use our trusty right triangle to form the angles between them. All we need to do
from there is turn the sides into the angles, which is done with the trigonometric functions
I mentioned a moment ago. From that, we can update the tank turret’s _rotation property.

But before we dig right into the trigonometric functions, we need to make sure everyone is
working with the same units.

Degrees and Radians
You can use several different units when you’re measuring an angle. The two units we’re
going to talk about are degrees and radians. Flash’s _rotation property uses degrees, but
the trigonometric functions use radians. For that reason, we need to understand both
degrees and radians as well as be able to convert between the two. First let’s look at exactly
what each unit represents.

To talk about angles, it’s easiest to use the Cartesian plane again. Assume there is one line
segment that goes right down the X axis. Then form a second segment starting at (0,0) and
going to any point on the plane. Now an angle has been formed between the two segments,
as shown in Figure 8.8.

What Are Degrees?
You already know a good deal about degrees. You certainly know that a right angle mea-
sures exactly 90 degrees. The sum of all three angles in a triangle is 180 degrees, and the
angle formed by going once all the way around the origin (a circle) is 360 degrees.

440 8. Advanced Timing and Trigonometry

Figure 8.8

Angles on the Cartesian plane are drawn starting at the X
axis.These angles are given in degrees.The angle is usually
labeled theta (_).

What Are Radians?
Radians are just numbers that represent angles, like degrees. There are 360 degrees in a cir-
cle. With radians, there are 2π in a circle. That means that 2π radians = 360 degrees.
Therefore, there are π radians in a half circle and π/2 radian in a right angle.

Converting Between Degrees and Radians
I’ve already told you that 2π radians are the same as 360 degrees. From that equivalence, we
can create an equation that relates the two. Assume that r is the number of radians and d is
the number of degrees. Then we have the following equation:

We can solve this equation first for r and then for d. These two solutions give us conversion
functions to go from degrees to radians and back again:

The way to approach unit conversion for angles is that the angle in radians must equal the
angle in degrees. The problem is that we have a mismatch in the units involved. The first
step in making the conversion is to move into a common frame of reference. In this case,
I’d like to use half circles. It takes 180 degrees to make a half circle and π radians to make a
half circle. Keep this in mind as we go to the next step.

In math, you can multiply any number by 1 and have the same number. The interesting
thing is that you can write 1 in many ways. 5/5 is 1, as is 10.4/10.4. Also half circle/half cir-
cle is theoretically equal to 1. Earlier, we looked at two ways of describing a half circle: one
as π radians and the other as 180 degrees. In that way, π/180 and 180/π are really both
equal to 1 as well.

To put it all together, if we have a number in degrees, we can multiply it by 1 and still have
the same value. In this case, though, if we multiply the number of degrees by π/180, we get
an interesting result. The degree units for our angle and the degree units for the half circle
cancel out. The only unit left is radians, which corresponds nicely with the fact that we were
looking for the angle in radians. Radian to degree conversion is the same, but this time we
use 180/π to cancel out the radian units on our angle and leave us with degrees.

We should go ahead and implement these two functions in Flash because we’re going to
need them. Let’s start with the degrees to radians function:

441Rotation

function d2r(d){
return d*Math.PI/180;

}

That’s easy enough. We call the method d2r on a degree measure, and it returns the angle
measured in radians. Now we need the opposite:

function r2d(r){
return r*180/Math.PI;

}

The r2d function requires a radian measure and returns the angle measured in degrees.

The Trigonometric Functions
Now we’re all set. We have the Pythagorean Theorem, the distance formula, and degrees
and radians. Everything we need to talk about trigonometric functions has been covered, so
let’s dive in.

We can introduce these functions in many ways. I’m going to use a bit of an unorthodox
technique to show you how trigonometry works in Flash. I have placed an .fla file (trig.fla)
and .swf file (trig.swf) in the Chapter 8 directory of the CD. These files show you an interac-
tive example of what I am about to explain.

Imagine that you have a Cartesian plane and you draw a line from (0,0) to (1,0). It would
look something like Figure 8.9.

442 8. Advanced Timing and Trigonometry

Figure 8.9

A segment drawn from (0,0) to (1,0) can
help us visualize the sine and cosine
functions.

Now imagine that the segment is fixed at the origin but that you can move the endpoint at
(1,0). You can drag that endpoint around the plane in a circle around the origin. This can
actually be done in the example trig.swf that I have included on the CD.

As you move the line around the origin, the endpoint that you are dragging changes its
coordinates. When you drag it straight up the Y axis, the endpoint coordinates are (0,1). If
you drag it back toward the negative X axis, the coordinates are (�1,0). If you drag it
between the X and Y axes, the X and Y coordinates will be somewhere between 0 and 1.

The actual values of X and Y when you do this are mapped by the sine and cosine func-
tions. If you present an angle to the sine function, it returns the Y coordinate of that line
segment when it is drawn with the given angle (the angle between the line and the X axis).

The cosine function, when given the same angle, produces the X coordinate of the line’s
endpoint.

You can use the trig.swf file to see the exact values of the endpoint as you drag the line
around the plane. Figure 8.10 shows this happening.

The sine Function
If we plot the changes to the Y value of the line segment’s endpoint (from the previous sec-
tion), we get a plot of the sine function. What used to be the X axis is used to plot the
change in the angle, and the Y axis plots the subsequent result from calling sine on that
angle. This can be seen in Figure 8.11, and it should be familiar to you.

443Rotation

Figure 8.10

As you move the line segment
(which always has length of 1)
around the origin, sine of the
angle gives Y value and cosine
gives the X value of the
segment’s endpoint.

Notice that the function repeats itself. That repetition in the curve (wave) is called a
period. Or more precisely, a period is the distance that a function travels before beginning to
repeat itself. In the case of sine, the period is 2π.

The cosine Function
The cosine function, when plotted, looks identical to the sine function except that it starts
at a value of y=1 instead of y=0. Cosine is π/2 out of phase with sine. Its plot can be seen in
Figure 8.12.

As you can see, the period of the cosine function is also 2π.

The tangent Function
Tangent is a bit different from the trigonometric functions we’ve seen so far. Tangent takes
an angle as its argument, like sine and cosine. But it returns the ratio of the sine of that
angle to the cosine of that angle, as in the following equation:

444 8. Advanced Timing and Trigonometry

Figure 8.11

The sine wave occurs
often in nature.

Figure 8.12

The cosine function is
identical to sine except
that it starts at y=1.

The plot of the tangent function can be seen in Figure 8.13.

The period for tangent is π, which is half that of sine and cosine’s period.

Tangent itself won’t be terribly useful to us, but as we’ll see in the next section, each
trigonometric function has an inverse, and tangent’s inverse will be helpful in determining
the angle of a line given its x and y constituent elements. Just bare with me another minute
and it will all come together.

The Inverse Trigonometric Functions
The trigonometric functions take an angle as their argument and return a value that we can
use as a coordinate distance. But what if we want to do the reverse? What if we already know
the coordinates and we want to know the angle? This is actually what we need in this case
because we are really trying to figure out how to rotate things so that they always face the
player. That requires an angle, based on the position of two objects whose coordinates are
known.

The inverse trigonometric functions do the opposite of the trigonometric functions. In
other words, the arcsine function undoes what the sine function does. This is also true of
arccosine and arctangent with cosine and tangent, respectively.

445Rotation

Figure 8.13

The tangent function varies from
negative infinity to infinity across the
period of π.

In fact, any inverse function is defined to be the function that undoes what some function
does. The following set of functions shows the relationship of the trigonometric functions
to each other. In this example, angles are denoted with theta (_) and lengths are denoted
with x:

In Flash, the actual method names are Math.sin, Math.cos, Math.tan, Math.asin, Math.acos,
and Math.atan/Math.atan2.

SOHCAHTOA
Now that we know what the trigonometric functions are, I’m tempted to start using them in
Flash to move and rotate things. But before we do that, we need to find a way to get rid of
the problem caused by our hypotenuse having a length that is not equal to 1. When the
length is 1, the trigonometric functions work great, but when it’s not, we have a problem.

Let’s go back to our right triangle diagram and take another look (see Figure 8.14). Notice
how I’ve labeled the angle we’re talking about as theta (_) and labeled the sides as oppo-
site, adjacent, and hypotenuse. Those side labels are relative to the angle in question. The
side that opposes the angle is called opposite, the side that makes up 1/2 of the angle is
adjacent, and the hypotenuse is always hypotenuse.

SOHCAHTOA (pronounced so-cah-toe-ah) is a mnemonic device that tells us the relation-
ship of the sides to the hypotenuse regardless of the lengths of the sides. Here is how it
works:

446 8. Advanced Timing and Trigonometry

Figure 8.14

The sides in a right triangle are labeled relative to
the angle we’re looking at.

SOH

In other words, the sine of the angle is equal to the ratio of the opposite side to the
hypotenuse. SOH should be seen read as “sin is opposite over hypotenuse.”

CAH

The cosine of theta is equal to the ratio of the adjacent side to the hypotenuse. CAH should
be seen read as “cos is adjacent over hypotenuse.”

TOA

The tangent of theta is equal to the ratio of the opposite side to the adjacent. TOA should
be seen read as “tan is opposite over adjacent.”

So what’s really going on here? Did I just pull SOHCAHTOA out of the air? Well, not really.
We already knew that the sine of the angle would be the y coordinate (assuming a
hypotenuse length of 1). That’s the same as the length of the opposite side. All we’re doing
is dividing the length of that side by the length of the hypotenuse. That scales the length of
the opposite side so that it’s correct to the sine function. To illustrate this to yourself,
assume the hypotenuse is actually 1 unit long. In that case, sine of theta would be equal to
the opposite side over 1, which is just the opposite side, something you already know to be
true.

We should take a moment now to consider the tangent function. Remember that it’s really
a ratio between the sine and cosine of the angle. When we plug in the SOH and CAH parts
of SOHCAHTOA into the tangent function, we get the following equation:

From that equation, the hypotenuse can be removed because anything over itself reduces to
1. We are left with the tangent function from SOHCAHTOA.

447Rotation

What is SOHCAHTOA good for? Well, if you know the length of one side and you know an
angle, you can use SOHCAHTOA to find the length of the unknown side.

But that’s not what this whole discussion is about, is it? We know the lengths of the sides,
and we’re looking for the angle so that we can properly rotate our graphic. It’s time to
bring back the inverse trigonometric functions.

Remember that arcsine did the opposite of sine? When I gave equations for this (refer to
“The Inverse Trigonometric Functions” section), I used theta for the angle and x for the
length. Well, we can use the equations for SOHCAHTOA in place of x in those inverse
equations to generate the following set of equations:

As you can see, these three equations can be called on the lengths of the sides to produce
the angle theta. Therefore, the three inverse trigonometric functions are our ticket to find-
ing angles based on the positions of the objects. All we have to do is rewrite these equations
into code Flash can understand, and we can solve the rotation problem.

Implementing Rotation in Flash
We’re finally ready to solve our problem. We have a movie clip and we want it to constantly
rotate to face the mouse, wherever the mouse moves to. You already know we’re going to be
using the inverse trigonometric functions, but which ones and on what? The answer is that
it is somewhat application dependent, but the majority of the time it works like this.

You want to rotate object A so that it always faces object B. In this situation, you know the
position of both objects—that is, you know their X and Y coordinates. That means you
know the length of the opposite and adjacent sides. You can, of course, find the length of
the hypotenuse by using the distance formula, but that is not necessary. With the opposite
and adjacent sides at your disposal, you can use the arctangent function. Remember that
arctangent of the opposite side divided by the adjacent side is equal to the angle formed by
the line between them and the X axis. So consider this implementation:

function faceMouse(o){
o._rotation = Math.atan((o._y-_ymouse)/(o._x-_xmouse));

}

448 8. Advanced Timing and Trigonometry

This should set the rotation to face the mouse using arctangent. However, if you test it, it
doesn’t work correctly. That’s because the rotation property is in degrees and the trigono-
metric functions use radians. We need to convert. Consider this implementation:

function faceMouse(o){
o._rotation = r2d(Math.atan((_ymouse-o._y)/(_xmouse-o._y)));

}
function r2d(r){

return r*180/Math.PI;
}

Now we’re using our r2d function to convert the radian measure to degrees. However, if
you test this, you find that it’s still not working correctly. The object faces the mouse when
the mouse is to the right of the object, but the object faces directly away from the mouse
when the mouse is to the left of the object. That’s because the period of tangent is only half
as long as that of sine and cosine. There is a built-in Math function that eliminates that prob-
lem. It’s called atan2 and it has the following general form:

Math.atan2(x,y);

In atan2, x and y are the coordinates of the object to face. In other words, they are the top
and bottom of the division that we sent to Math.atan in the previous implementation.
Consider this final implementation:

function faceMouse(o){
o._rotation = r2d(Math.atan2(o._y-_ymouse, o._x-_xmouse));

}

Notice that instead of a division, we’re send-
ing in the side lengths as individual argu-
ments. The atan2 function handles them
properly and our resulting angle is correct.

That’s about as far as I want to go into the
subject of trigonometry. We could spend
several chapters talking about things we can
do with it—including simulating 3D
effects—but that would get us somewhat off
track. What we’ve covered so far is sufficient
to give you an idea of how trigonometry
works and how you can use it to move and
rotate objects in your game.

Trigonometry on Any Triangles
I do want to mention one last thing because I hate to leave the subject of trigonometry
without at least touching on this subject.

449Rotation

CAUTION
If your symbol’s art does not face
toward the right, you must either
rotate it manually or add 90 degrees
to the object’s rotation if the object
is pointing up.That’s because a 0
degree angle implies pointing down
the X axis, not pointing straight up
as your intuition might tell you.

So far, all the trigonometry we’ve done has been on right triangles. Things are simple that
way, but the trigonometry functions are more powerful that that. You can use trigonometry
to find the relation of sides to angles in any triangle, whether it’s right, obtuse, or acute.
The equations for doing this are listed in any advanced algebra book, so I won’t be covering
them here. You can find links to some trigonometry tutorials in Appendix D, “Web
Resources and Further Reading.”

Creating Blow ‘Em Up
Now that we can do timed movement as well as omnidirectional motion and rotation, it’s
time to demonstrate these concepts in a game. This game must be some kind of reflex
game where things move quickly and have objects that rotate and move toward arbitrary
points on the stage.

The Idea
When I was a young, I played my first game of Asteroids in a standup arcade. Ever since then,
I’ve been captured by games where you fly a tiny ship around the screen blasting things.
There have been countless takes on this style of game, and they range from very simple to
extremely complex. Our version, Blow ‘Em Up, is somewhere in the middle in terms of com-
plexity.

As with most of the games in this book, I’ll be designing in a way that allows you or me to
go in later and implement new pieces and functionality to expand the game. If I imple-
mented every detail I would like to, this book would probably only cover a couple of games.
So instead, I’m going to build the game as if it were complex, but then stop building after
the main game mechanics are in place.

Please note that this chapter’s game, like every other game in the book, is contained on the
CD in the appropriate chapter directory in two forms. The first format contains all the code
and the second contains just the library setup with the code missing.

I would like to have a small ship like in Asteroids, but I don’t want the movement to be the
same. I’ve never liked the “float in space” style ship control some games have. I’ve always
felt that when you give the player sloppy control, it detracts from the game. It’s better to
give the player precise control of his ship and let the bad guys be what the player worries
about. In the original Asteroids game, after you thrusted forward, there was little chance you
could put your ship back in the center of the screen motionless because once the ship was
moving, it didn’t slow down unless you spun around and then thrusted back the other
direction.

We could implement thrust either way because we have the necessary skills, but I prefer to
give my ship exact controls. When the player in Blow ‘Em Up stops thrusting, his ship will
come to an immediate stop.

450 8. Advanced Timing and Trigonometry

In this game, bad guys come in waves, like in Asteroids, but instead of breaking into smaller
bad guys, one shot kills a bad guy in our game. In addition, the bad guys in Asteroids just
sailed around randomly, hoping to bang into the player by blind luck. In Blow ‘Em Up, the
bad guys actively seek out the player to destroy him.

Finally, when bad guys die, they sometimes leave powerups behind. These powerups have
different bonuses and restrictions that they place on the player. Some make the player
stronger and some weaker. Powerups, if ungathered for a certain amount of time, should
disappear.

When the player moves off the stage, he should be teleported to the opposite side with his
rotation in tact. This feature allows the player to move in one direction constantly and
appear to fly across the screen repeatedly. This was a feature of Asteroids as well.

In Asteroids, the bad guys conformed to this
teleport across the stage rule. But in Blow
‘Em Up, bad guys are able to move off the
stage, out of the player’s sight, without tele-
porting to the other side. Because the bad
guys are seeking the player out, they won’t
stay offstage for long.

In fact, Asteroids teleported everything
around the stage, including the player’s bul-
lets. In Blow ‘Em Up, the player’s bullets also
teleport to the other side of the screen
when they reach the edge. This combined
with the fact that the bad guys can go off
the stage without teleporting should make
for an interesting gameplay. And, of course,
if it doesn’t work out well, we can change it
during implementation when we can test
the game.

451Creating Blow ‘Em Up

NOTE
During testing, a friend of mine said that this immediate stopping was “unrealis-
tic.” Rather than explain to him that a game like this is not realistic in the first
place, I took a different approach. I told him that in this game, the ship was con-
trolled by a newly invented gravity inversion drive that caused the ship to move
while maintaining 0 inertia.These new gravity inversion drives are the latest and
greatest thing in fighter ship design.

TIP
Again, I want to mention that you
don’t need to do your entire design
up front. If you are working on a
multimillion-dollar game with
dozens of people, this is not the
case, but when you’re making a Flash
game in a one-, two-, or three-man
team, the full design is not required
up front. I personally find that it’s
better to get a general idea at first
and then leave some of the details to
get worked out during implementa-
tion. Implementation lets you play
parts of the game to test how differ-
ent ideas would work.

The player should have shields as well,
which is a replacement to the hyperspace
that Asteroids had. The shield should absorb
one enemy collision and then disappear.
The player can manually turn on and off
the shields. The total number of shields the
player has is variable. When the player turns
the shield off, this number does not
decrease. The number only decreases when
the player collides with a bad guy.

If the player runs into a powerup with his
shields on, the powerup should disappear
and he should lose his shield. Only by tog-
gling the shields off can the player pick up
powerups.

At this point, I have a couple of pages of game ideas, and it’s time to start looking at how
we’ll arrange our scripts.

The Art
As far as I can tell right now, there are only five game object types. There is the player’s
ship, the ship’s bullets, the bad guys, the powerups, and the scoreboard. We need to set up
our library with symbols for each.

The Ship Art
All the pieces of the ship are contained in the ship folder in the library, as shown in
Figure 8.15.

452 8. Advanced Timing and Trigonometry

NOTE
In Asteroids, hyperspace randomly
teleported your ship when you
pressed the button, but it never real-
ly worked out in Asteroids like it
could have. Hyperspace was so dis-
orienting and random to use that a
player was better off trying to thrust
out of trouble rather than risk the
hyperspace jumps.

As you can see by looking through the library, I have broken up the ship into several pieces.
That’s because when the player dies, I want his ship to break into pieces and for each piece
to fly off the screen separately. The player’s ship will be a compilation of several pieces that
can break apart at destruction.

The player’s bullet, the ship’s flame, all the pieces of the ship, and the conglomerate ship
are all kept in the ship folder, exported for ActionScript.

The Bad Guys Art
There is a badguy folder that contains three different bad guys, as shown in Figure 8.16.
The main difference between these bad guys, other than their appearance, is the way they
move toward the player. Some move directly at him and others move at him from different
angles.

453Creating Blow ‘Em Up

Figure 8.15

The library contains a ship folder that has all of the player’s ship art assets.

Although I’m creating only three types of bad guys, I want to develop the game so that
adding more is as easy as possible. The process should be as simple as creating the new sym-
bol and then adding a few lines of code. No logical programming should be required to
add new bad guys other than the programming of the new bad guy’s movement type.

The Powerups Art
Much like the bad guys, I’m creating only a limited number of powerups—just 4. But it
should be extremely easy to add new ones. All the powerups look the same, but they are
different colors and have a different letter. You can see all the powerups in Figure 8.17.

454 8. Advanced Timing and Trigonometry

Figure 8.16

The badguy folder has three bad guys, but creating more bad guys would be
trivial.

The powerups look similar, but they have different colors and different letters on them.
Each powerup has a different effect on the ship. The four powerups I’m going to imple-
ment have the letters D, S, L, and F associated with them. The D powerup gives the player
doubleshot, where he can shoot twice as many bullets. The S powerup gives the player an
extra shield. The L powerup replenishes the life (hit points) of the ship. And the F
powerup freezes the player in place. This last powerup is not a good thing; the player
should try to avoid it.

The Scoreboard Art
The player needs instructions that are given in the instructions movie clip, which contains a
text field and a button. The text field contains the text for the instructions when the game
starts, shows the player his score, and waves when his game ends. The button starts or
restarts the game.

The second piece of scoreboard art is the panel that appears while the player is playing the
game. It contains a field with the player’s score, the current wave, his current life (hit
points), the number of shields he has, as well as his current frame rate.

This panel can be seen in Figure 8.18 along with the scoreboard folder and its symbols.

455Creating Blow ‘Em Up

Figure 8.17

The life meter is of particular interest. When the game begins, the player’s life is shown as a
bar on the scoreboard. The left side of the bar is red, and it progresses to green as you go
to the right. Each time the player takes damage, a piece of the life bar should disappear.
When the player gets close to destruction, the life bar should be a small red sliver of what it
used to be.

To implement the life meter, I used a mask. Masks in Flash are used to hide pieces of your
art. You can right-click on a layer and change it to be a mask to get this effect. Anything
that is masked will be displayed, but things that fall outside the mask will not be. By using a
movie clip as a mask and naming it, I can display only as much of the life bar as I want to.
For more information on using masks, consult the Flash Manual.

Another option would have been to scale down the life bar as the player takes damage, but
then the colors of the life bar would scale with it. That is not the desired look. I want the
life bar to appear to be eaten off or cut off as the player takes damage. For that, I need to
mask out part of the life bar.

I finish the acquiring of library assets by importing some sound effects that I will add at the
end of the implementation. All the sounds go inside a sound folder.

The Design
Now that our library is packed with symbols, we need to think about how we should
organize the creation and control of those objects. The game’s overall structure has four
main parts:

456 8. Advanced Timing and Trigonometry

Figure 8.18

The scoreboard gives the player vital
feedback about his game.The library
contains a folder that has all the scoreboard
pieces inside.

■ The game’s control functions, which do things like initialize, start, and reset the game
■ The ship’s control functions, which handle things like player’s input and the ship’s reaction to

it
■ The bad guy control functions, which handle the creation and control of the bad guys
■ The powerup control functions, which handle the creation and control of the powerups

Game Control
As usual, I’m starting everything off with a call to initGame, which is the function that is exe-
cuted only once for the life of the game:

initGame();
function initGame(){
}

We follow this with a function that is similar to initGame:

function startGame(){
}

The startGame function is called when the game begins. It is only called once, like initGame.
The only reason that startGame and initGame are not combined into one large function is
because initGame creates the instruction page, and the game does not start until after the
player has pressed the Start button, which calls startGame.

When the player dies, there is a call to a function named endGame:

function endGame(){
}

This function pops up a screen showing the player his score and wave and presenting a
Reset button. When the player presses the Reset button, the resetGame function is called,
starting a new game:

function resetGame(){
}

Those four functions control the game. There is no playGame function this time because we
attached that function to the onEnterFrame handler. This time we’re using intervals to han-
dle that kind of work, and there will be a unique function for each game object: the ship,
the bad guys, the bullets, and the powerups.

The Ship Design
The ship is somewhat complex. Making it explode into pieces takes a fair bit of script.
Combined with the ship control, gun firing, shields, and so on, the implementation of the
ship is the largest part of the game. I want to introduce all the functions now and then
implement them in the next section. I prefer this way of presenting the information to you
because it gives you an idea of the overall code organization before you start to see the
details of the implementation.

457Creating Blow ‘Em Up

Keyboard Control
The keyboard controls the ship. That means we need to register the ship movie clip as a lis-
tener for the Key object. That allows us to trap onKeyUp and onKeyDown messages with the
ship. To give those events functionality, I’m creating two functions: shipKeyUp and
shipKeyDown. Later when we implement the initGame and startGame functions, these ship
key handler functions will be attached to the ship’s onKeyUp and onKeyDown handlers:

function shipKeyDown(){
}
function shipKeyUp(){
}

Ship Engine Function
As I said early in this chapter, we will assign functions to repeating intervals. Each function
controls a specific logical unit of the game. The ship is one of these objects. Therefore, we
must define a function to be called to update the ship every x milliseconds. I generally
name these functions with the name of the object they control and the word Execute
appended to that name. The following function uses this convention and will be used to
update the ship’s position:

function shipExecute(){
}

Shields and Bullets
One function, toggleShield, controls the shields. This function turns off the shields if they
are on and turns on the shields if they are off. The player must have at least one shield at
his disposal:

function toggleShield(){
}

The fireBullet function creates (fires) the bullets, declared as follows:

function fireBullet(){
}

As bullets are created they are not attached to the ship. In fact, they are not part of the ship
in any way. They are free-floating entities after they’re fired. For that reason, I want to cre-
ate a bulletExecute function that updates all the bullets on the stage at a given interval, just
like shipExecute updates the ship:

function bulletsExecute(){
}

Turning on the Flames
When the ship turns left, a flame shoots out of the right tailpipe. The same holds true when
the ship turns right, with a flame in the left tailpipe. When the ship moves forward, both
tailpipes have flames. And when the ship moves backward, the nose has flames coming out.

458 8. Advanced Timing and Trigonometry

To handle making the correct flames visible, I have created a function called setFlame. This
function checks the status of the control key and lights the appropriate flames:

function setFlame(){
}

Controlling the Life Meter
The life meter that displays the current amount of ship life must have its mask changed.
I’ve encapsulated this into a function called setLife. Each time the life of the ship changes,
setLife is called to correctly size the life meter’s mask:

function setLife(){
}

When the Ship Collides
When a bad guy collides with the ship, the bad guy is destroyed and the ship takes damage.
The call to damage the ship follows:

function hitShip(damage){
}

This hitShip function is called when the ship has been hit already; it does not imply a hit
test. The single argument, damage, is used to tell the function how much damage to inflict
on the ship for this hit. After hitShip applies the damage, it checks to see if the ship is still
alive. If the ship is dead, hitShip calls killShip:

function killShip(){
}

Ship Explosion Functions
I need some helper functions to make the ship die and break into pieces. For one thing, I
don’t want to record the coordinates of the ship pieces myself. I would prefer to record the
coordinates from the symbol when the game starts and then reassemble the ship when the
game is reset from those recorded coordinates.

To make things easy, I’ve created a function to record the position of each piece of the ship
for later use:

function setInitialValues(o){
}

Now I need a function to move each piece randomly during the ship’s explosion. When the
ship dies, random values are assigned to each of the ships so that they can move away from
the point of explosion moving and spinning randomly. The following function handles the
updating of these pieces:

function moveObject(o,x,y,r){
}

459Creating Blow ‘Em Up

In the moveObject function, o is the object to move, x and y are the changes required to
make in o’s position, and r is the amount of rotation to apply. This moveObject function
takes the place of the shipExecute function and is put on an interval timer just like
shipExecute and bulletsExecute are. In fact, the shipExecute interval is cleared so that the
player cannot control his ship while it’s dead.

After the player resets the game, we need to reassemble the ship from its initially recorded
positions (gathered in setInitialValues). The resetObject function does that for us; to
start that process, let’s stub the function now:

function resetObject(o){
}

The Bad Guys Design
The bad guys are pretty simple from a design standpoint. We need an update function like
shipExecute, we need to be able to create the bad guys in waves, and we need to be able to
handle the bad guys’ collisions.

Bad Guy Engine Function
To stick with the naming convention, I’m calling the function that updates the position of
the bad guys on an interval badGuysExecute:

function badGuyExecute(){
}

This function is called on an interval like shipExecute. This function does not update the
bad guys; instead, it calls a method of each bad guy called move. When the bad guys are cre-
ated, each is given a move method that is specific to that type of bad guy. When the bad guy
execution function is called, it calls the move function on each bad guy individually.

This bad guy execution function is also responsible for testing to see if the player has killed
all the bad guys. When that happens, a function must be called to increment the wave and
create the next batch of bad guys.

Creating Bad Guys
When a new wave is required, the badGuysExecute function calls a function called spawnWave,
which has the job of populating the stage with bad guys for the new wave:

function spawnWave(){
}

This spawnWave function is the place where waves are preprogrammed. I want to be able to
preset the quantity and type of bad guy created in any wave I want, but I don’t want to have
to program all possible combinations. Therefore, this function takes my wave order for bad
guys and calls the function that actually creates the individual bad guys and gives them their
move methods:

460 8. Advanced Timing and Trigonometry

function createBadGuy(badGuyOrder){
}

This set of functions might be confusing, particularly when I talk about preprogramming
the waves. But don’t worry—when we get to the implementation of these functions, it will
be clear what I’m talking about and why I’m dividing things up this way. For now, I just want
to give you an overview of how things work.

When Bad Guys Collide
The bad guys need a way to hit test the ship again to see if they have found their mark yet. I
have encapsulated this hit test into a function called hitTestShip:

function hitTestShip(bg){
}

The single argument to this function, bg, is a reference to the bad guy to hit test against.

When the bad guy either runs into a bullet or runs into the ship, that object is destroyed.
When this happens, the following function is called:

function hitBadGuy(bg, powerupPercentage){
}

The first argument, bg, is the bad guy to be hit. The second argument, powerupPercentage,
indicates the likelihood that the bad guy should drop a powerup for the player.

The Powerups Design
The powerups are extremely simple because they don’t move and don’t stay around very
long. Only two functions are required to handle them.

The first function updates the powerups, checking to see if the ship has collided with the
powerup:

function powerupExecute(){
}

This works just like shipExecute and bulletsExecute in that it is called from an interval so
that it works on a timer.

When a powerup needs to be created, the createPowerup function is called:

function createPowerup(bg){
}

The single argument to createPowerup, bg, is needed because the powerup must be placed
right under the newly destroyed bad guy. A reference to this bad guy is passed in so that its
position properties can be pilfered by the powerup.

461Creating Blow ‘Em Up

The Implementation
You should now have a general idea of how things are going to be organized. It’s time to
get into the gritty details of making all this happen. Most of the implementation is pretty
standard, and you’ve seen much of it before. I won’t comment much on the things you
should understand well by now; that way I can focus on describing the new parts in detail.

Implementing the Game Control Functions
Remember that there are four game control functions. The initGame function is called to
create the instructions. After the player reads the instructions and presses Start, the game is
set up for the first time with startGame. When the player dies, endGame is called. Finally,
when the user resets the game using the Reset button, resetGame is called. Let’s implement
each of those now.

Implementing initGame
This function is pretty simple. All we need to do is attach the instructions panel and set up
its text field and button. I also want to add a key to tell the player which powerups do what.
I have created a symbol in the library called powerupKey that contains this information. Let’s
attach it to the instructions clip after it’s been created.

Let’s begin the implementation. First I want to set the stage’s alignment and scaling mode
so that nothing scales. If we are going to make the movie not scale, we should also set
alignment to the top left so that we can use the Stage properties like we did in Chapter 6.
The following code goes inside the initGame function that we defined previously.

Stage.align=”TL”
Stage. scaleMode = “noscale”;

Now we can attach the instructions:

attachMovie(“instructions”,”instructions”,0,{_x:Stage.width/2,
➥_y:Stage.height/2});

We want to set up the text in the instruction’s text field, which I named feedback in the
instructions symbol. Because the instructions should be broken over multiple lines, we need
to use the escaped character \n for the new line:

instructions.myText.text = “Arrow Keys to Move\nControl to Fire\n
➥Shift Toggles Shields\nTurn off shields to\ngather powerups\n
➥Alternate Move: (u,h,j,n)\nAlternate Fire: g”;

Now let’s set up the button that starts the game:

instructions.startButton.stop();
instructions.startButton.myText.text = “start”;
instructions.startButton.onRelease = function(){

instructions.removeMovieClip();
startGame();

}

462 8. Advanced Timing and Trigonometry

Notice that I’m attaching an onRelease handler to the button, which removes the instruc-
tions movie clip and calls the startGame function.

Finally, we need to attach the powerupKey so that the user can see which powerups do what:

instructions.attachMovie(“powerupKey”,”powerupKey”,1,{_x:50,_y:-100});

You can test to see that your instruction menu is working correctly, as shown in Figure 8.19.

Implementing startGame
After the user has read the instructions and pressed the Start button, startGame is called.
startGame first needs to set all the depth constants that we need in this game. They follow:

bullet_depth = 10;
badGuy_depth = 99;
ship_depth = 100;
powerup_depth = 101;
scoreboard_depth = 2000;
instructions_depth = 2001;

Next we need to set interval values for the execution functions that update our game
objects. We can tweak these variables during testing so that the game plays well on slower
platforms. The trick is to get the numbers as large as possible (as seldomly called as possi-
ble) but not so high that gameplay is affected:

playerTick=40;
bulletTick=100;
badGuyTick=100;
powerupTick=120;

These tick values amount to the number of milliseconds between updates to their respec-
tive objects. As you can see, the player will update every 40 milliseconds, but the bullets and
bad guys will iterate every 100 milliseconds. By allowing the bullets and bad guys to iterate
so seldom (10 times a second), the CPU load is kept at a minimum.

Now we need to define some constants that are used for the speed things turn at, the speed
things move, and so on:

463Creating Blow ‘Em Up

Figure 8.19

The instructions, Start button, and powerup key should
be visible when you test your game.

ship_rotation_speed = 9;
ship_speed = 8;
bullet_speed = 25;
bulletLifeSpan = 8;
fireDelay = 250;
doubleShot=false
life=100;
lifemax=100;
initialShieldCount = 2;
shieldCount = initialShieldCount;
wave=0;
score=0;
badGuyCount=0;
maxBadGuys = 16;
powerupLifeSpan = 35;
normalPowerupPercentage = 50;

Most of these should be self explanatory from their names, but let me mention a few that
might not be. powerupLifeSpan is the number of powerup update iterations until the
powerup disappears. maxBadGuys is the maximum number of bad guys that can be contained
in a given wave. shieldCount is the number of shields the player currently has available.
doubleShot indicates whether to fire one or two bullets at once.

Now let’s create the ship. We can do this here because we only need to create one ship the
entire game. The same ship will be reused each time the player begins a new game. First we
attach the ship, and then we move it into position:

attachMovie(“ship”,”ship”,ship_depth);
ship._x = Stage.width/2; ship._y = Stage.height/2;

Then we set the shield to be invisible because when the game starts, the shields should be
off:

ship.shield._visible = false;

We need to assign the keyboard handlers to the ship so that they respond to keyboard con-
trols:

ship.onKeyDown = shipKeyDown;
ship.onKeyUp = shipKeyUp;

Now we can register the ship as a Key listener:

Key.addListener(ship);

We need to turn off the visibility of the flames. However, because we have a function for
controlling this, let’s just call it:

setFlame();

464 8. Advanced Timing and Trigonometry

Now we need to set up the individual pieces of the ship so that it can explode when the
player dies. I need to create two arrays to do this. In the first array, I keep a set of intervals
that will be responsible for updating the ship’s pieces during the explosion. The second
array is used to hold reference to the individual pieces so that I can easily iterate through
them. Let’s create the arrays now and then fill the array of pieces:

ship.intervals = new Array(8);
ship.pieces = new Array(8);
ship.pieces.push(ship.leftTopBody);
ship.pieces.push(ship.leftBottomBody);
ship.pieces.push(ship.rightTopBody);
ship.pieces.push(ship.rightBottomBody);
ship.pieces.push(ship.leftTopWing);
ship.pieces.push(ship.leftBottomWing);
ship.pieces.push(ship.rightTopWing);
ship.pieces.push(ship.rightBottomWing);

Now we have reference to each piece stuffed into the ship.pieces array. At this point, we
can iterate through that array and set the initial values for each piece. Remember that when
the game is reset, the pieces must come back to the ship and be reassembled for the next
game. That requires us to record the initial coordinates of all the pieces before we explode.
After the pieces are recorded, we can revert back to these initial coordinates whenever the
game is reset:

for(var i=0;i<ship.pieces.length;++i)
setInitialValues(ship.pieces[i]);

Finally, it’s time to set up the interval that controls the ship’s update. The following line
does so:

shipInterval = setInterval(shipExecute, playerTick);

As you can see, the interval, named shipInterval, calls shipExecute every playerTick millisec-
onds. That concludes the creation of the ship. We can now create the other things we’re
going to need.

As in several games past, I’m organizing my bullets and bad guys into their own empty
movie clips to avoid depth collisions. This has the added bonus of allowing me to iterate
through all the bad guys or all the bullets without using an array. Let’s create the empty
container clips now:

createEmptyMovieClip(“bullets”,bullet_depth);
createEmptyMovieClip(“badGuys”,badGuy_depth);
createEmptyMovieClip(“powerups”, powerup_depth);

Now we can go ahead and create the update intervals for each of those and store the inter-
val IDs into their own variables:

bulletsInterval = setInterval(bulletsExecute, bulletTick);
badGuyInterval = setInterval(badGuyExecute, badGuyTick);
powerupsInterval = setInterval(powerupExecute, powerupTick);

465Creating Blow ‘Em Up

As you can see, these interval creation calls are just like the shipExecute interval except they
each uses its own interval name, function call, and millisecond timer.

Now we can create the scoreboard object that gives the player feedback about his score, life,
shields, and so on:

attachMovie(“scoreboard”,”scoreboard”,scoreboard_depth,{_y:Stage.height});

I will need to use a point later on, but I don’t want to create new point objects every time.
For that reason, let’s create one here and then use it everywhere else:

p=new Object();

Finally, let’s make the call to createSoundManager, which I will implement later:

createSoundManager();

That completes the startGame function. Before we end the game, I want to talk about a spe-
cial kind of for loop that we’ve skipped over thus far.

Using a for in Loop
There is an alternative way to use a for loop. Instead of the index that we usually use, you
can use what is called a for in loop. The loop has the following general form:

for(i in mc){}

When you do this, the for loop iterates once for every clip attached to mc. From there, you
can reference back into the clip using array notation. For example, if you create a clip
named myClip and then attach 50 different clips to it, you can easily iterate through any of
those clips and say, scale them down by 50 percent, with the following script:

for(mySubClip in myClip){
myClip[mySubClip]._xscale = 50;

}

This gives us an easy way to iterate over all subclips in a container clip without keeping
track of their names or using an array. In the future, I will use this technique to iterate
through container clips like the bad guys, bullets, and powerup containers.

Implementing endGame
When the player dies, the killPlayer function is called. That function is responsible for set-
ting all of the player’s pieces into motion. It is also responsible for setting up an interval
called endGameInterval that waits a few seconds for the ship’s pieces to scatter and then calls
endgame, which has the responsibility of bringing up the End Game screen.

The first thing we need to do in endGame is remove the interval that called it. That’s because
when the player dies, we want to give Flash a few seconds to display the explosion before
bringing up the End Game screen. We can use an interval in killShip to call endGame on an
interval we name endGameInterval. Therefore, the first order of business is to remove that
interval so that endGame is called only once:

466 8. Advanced Timing and Trigonometry

clearInterval(endGameInterval);

Now we can attach the end game clip. Let’s reuse the instructions clip for this, as in the fol-
lowing code:

attachMovie(“instructions”,”instructions”,instructions_depth);
instructions.myText.text=”You’re dead\nscore = “+score+”\nwave = “+wave;
instructions._x = Stage.width/2;
instructions._y = Stage.height/2;

We can set up the button on the Instructions panel to reset the game:

instructions.startButton.stop();
instructions.startButton.myText.text = “reset”;
instructions.startButton.onRelease = resetGame;

When the player clicks the Reset button, the resetGame function is called.

Implementing resetGame
To reset the game, we need to remove the End Game panel that the user used to reset the
game:

instructions.removeMovieClip();

Then we need to remove all the intervals that update the ship pieces. These are set up dur-
ing the call to killShip:

for(var i=0;i<ship.intervals.length;++i){
clearInterval(ship.intervals[i]);
resetObject(ship.pieces[i]);

}

Notice that we clear the interval and then call resetObject on the pieces of the ship
(retrieved from the pieces array).

Now we want to remove all the bad guys in the bad guy container clip. The following line of
script does that:

for(bg in badGuys)badGuys[bg].removeMovieClip();

Notice the user of a for in loop here. That way, bad guys can come and go as they please
and we don’t have to keep an array of references current and up to date.

We need to remove all the powerups as well, and we can do it in the same way as our bad
guys, using a for in loop:

for(pu in powerups)powerups[pu].removeMovieClip();

Now that we’ve destroyed all the bad guys, we need to reset the bad guy count that is used
to determine how many bad guys are still alive in the current wave:

badGuyCount=0;

467Creating Blow ‘Em Up

We need to reset the ship’s position and rotation to their original values:

ship._x = Stage.width/2; ship._y = Stage.height/2;
ship._rotation = 0;

We need to reattach the ship key handlers. These were originally attached during
startGame, but when the player dies, he is removed so that the player cannot control his
ship while it explodes. The actual removal of the key handlers is done in the killShip func-
tion. Here in the resetGame function, we need to reattach those key handlers:

ship.onKeyDown = shipKeyDown;
ship.onKeyUp = shipKeyUp;

We also need to start up the ship’s update interval:

shipInterval = setInterval(shipExecute, playerTick);

We want to reset the player’s life to its maximum value and then call setLife to display it
correctly. Remember: When we change the life value, we must also call setLife to change
the scoreboard’s display:

life=lifemax;
setLife();

We need to set the shield count back to its original value:

shieldCount = initialShieldCount;

We then need to reset the score and wave:

wave=0;
score=0;

The double shot and frozen powerups set a variable to true when they are on. Because the
new game is starting, we should turn them both to false to conclude the implementation
of resetGame:

doubleShot=false;
frozen=false;

Implementing the Ship
The ship is quite complex, and it has a number of functions associated with it. Much of its
implementation should be familiar to you from past games.

Implementing shipKeyDown
We’ve already registered the ship as a Key listener in the startGame function. We’ve also
attached the shipKeyDown handler to the ship’s onKeyDown handler. We’re now ready to
implement this function.

First we need to find out what key was pressed to trigger the onKeyDown event. This is done
with the Key.getCode method, as described in Chapter 6, “Objects: Critter Attack.”

468 8. Advanced Timing and Trigonometry

k=Key.getCode();

Then we do one large conditional statement to see if the key is any of our control keys that
would require us to draw the flames. I’ve created two sets of control keys in this game
because some players prefer not to use the arrow keys. That means we need to trap for both
sets of control keys:

if(k==Key.LEFT||k==Key.RIGHT||k==Key.UP||k==Key.DOWN||
➥k==85||k==72||k==74||k==78){

Inside this condition, if we trap each pair of control keys separately and if any control key is
the key that was pressed, we set the ship’s property for that key to true:

if(k==Key.DOWN||k==78)ship.down=true;
else if(k==Key.LEFT||k==72)ship.left=true;
else if(k==Key.RIGHT||k==74)ship.right=true;
else if(k==Key.UP||k==85)ship.up=true;

Finally, we call setFlame before leaving the if statement:

setFlame();
}

The final line in the shipKeyDown function tests for the Shift key to toggle the shields before
leaving the function:

else if(k==Key.SHIFT)toggleShield();

You might have noticed that we didn’t test for the fire keys (Ctrl and G). That’s because we
can simplify the firing by doing a Key.isDown call inside the shipExecute function. That way,
the player can leave the fire key pressed down, and the ship continues to fire. This could be
done in the onKeyDown handler here with the rest, but it would require a bit more code. To
keep things simple, I’m leaving that call in the shipExecute function.

Why Not Use Key.isDown for All Controls?
You might be wondering why I use ship.up and ship.down to keep track of which keys are
being pressed instead of using Key.isDown calls. My reasoning is threefold.

First, sometimes the control of the player is quite complex. You might want certain key
combinations to have specific behavior. Sometimes it’s easier to use your own variable to
hold key pressed information because you can easily change the state of a key yourself. You
can’t make Key.isDown() false when the user is pressing the key, but you can certainly
change ship.down to false if you need to, even if the player is pressing the key.

Second, you might need to make multiple checks because of nested conditional statements.
That would require multiple calls to Key.isDown for the same key. In a situation like that,
you would probably call isDown once and store the value for multiple uses. However, if you
are going to temporarily store the value anyway, why not just set these values during onKepUp
and onKeyDown handlers and avoid Key.isDown altogether? There is no good reason not to
do so.

469Creating Blow ‘Em Up

Third and most importantly, when we create algorithms to control opponent behavior, it is
often convenient to use the same control functions for both the player and the computer
opponent. By keeping the key presses as variables, we can later develop an opponent algo-
rithm that decides what it wants to do and then sets the keys down to do it. From there, a
generic control handler makes object move. That way, the same control handler can be
used for the player, who has keyboard control, and the computer opponent, who just pre-
tends to press keys. If the handler functioned on a Key.isDown call, this would not be possi-
ble and two handlers would be needed: one for the player and one for his opponent.

Implementing shipKeyUp
We need to do the reverse of shipKeyDown in this function, shipKeyUp. In fact, the implemen-
tation of shipKeyUp is nearly identical to shipKeyDown, so I’m not going to explain it piece by
piece. I’ll simply dump the entire function now and then comment on it:

k=Key.getCode();
if(k==Key.LEFT||k==Key.RIGHT||k==Key.UP||k==Key.DOWN||k==85||k==72||k==74||k==78){

if(k==Key.DOWN||k==78)ship.down=false;
else if(k==Key.LEFT||k==72)ship.left=false;
else if(k==Key.RIGHT||k==74)ship.right=false;
else if(k==Key.UP||k==85)ship.up=false;
setFlame();

}

As you can see, we have the same large if statement to test against all the control keys.
Inside, we trap for each one individually and then call setFlame. There is no test for Shift
because the player does not hold down Shift to enable shields. Instead, pressing the Shift
key toggles the shields on and off, and only on the pressing of Shift, not the release.

Implementing shipExecute
As you know, the shipExecute function is called by an interval to update the ship’s position
and orientation. When I was creating this function, I had a decision to make regarding the
way the player’s ship would be disabled when the freeze powerup was captured. The idea
was that the player’s ship would not be able to move or fire for a few seconds after touching
the freeze powerup. My initial thought was to remove the shipExecute interval for a few sec-
onds and then replace it to restore control. Then I decided to place an if statement inside
the shipExecute that would check for a frozen ship. This method is cleaner and simpler, so
I’m going with it. Our shipExecute function begins with a check for frozen:

if(!frozen){

Now we need to set the ship’s rotation. We actually don’t need any trig or algebra for this.
I’ve set a ship_rotation_speed variable in the startGame function. If the player is pressing
the left arrow, we subtract this rotation speed to the ship’s rotation. Likewise, we add the
rotation speed to the ship’s rotation when the player presses the right arrow.

470 8. Advanced Timing and Trigonometry

if(ship.left)
ship._rotation-=ship_rotation_speed;

if(ship.right)
ship._rotation+=ship_rotation_speed;

If you close the if(!frozen) statement and test now, you can see the ship rotating correctly
based on the pressing of the arrow keys.

Now it’s time to check for forward and backward control. Like the rotation, we need to test
that one is true and the other is false so that we know the user isn’t pressing both forward
and backward at the same time.

To find the changes to the ship’s X and Y, we need to use some trigonometry. We have the
rotation (angle) and we know the hypotenuse length (speed or distance to travel), so we
need to break that into its X and Y coordinates so that we can update our ship’s position.
Remember that sine represents the X value and cosine represents the Y value:

if(!ship.down && ship.up){
ship._x += ship_speed * Math.sin(d2r(ship._rotation));
ship._y -= ship_speed * Math.cos(d2r(ship._rotation));

}

With everything you’ve learned, the preceding script should make sense now. The one odd-
ity is the subtracting of cosine from the ship’s Y coordinate. We subtract because in Flash,
the Y axis is flipped so that it points down. By negating the update to Y, we fix this inconsis-
tency with our previous Cartesian plane examples and trigonometry equations.

Now we can do the same thing for moving in reverse. The only difference is that now we
subtract from the ship’s X coordinate and add to the ship’s Y coordinate, which effectively
reverses the movement of the ship. We also want to divide the speed by four so that move-
ment in reverse is much slower than movement forward:

else if(ship.down && !ship.up){
ship._x -= (ship_speed/4) * Math.sin(d2r(ship._rotation));
ship._y += (ship_speed/4) * Math.cos(d2r(ship._rotation));

}

Now I want to test the fire keys to see if the user is pressing them. Remember that in
shipKeyDown, I said I would differ the check of the fire keys until shipExecute? Well, now it’s
time to add that. If either of the fire keys is down, I need to call fireBullet:

if(Key.isDown(Key.CONTROL)||Key.isDown(71))fireBullet();

Now that everything has been updated on the ship, I’m ready to test to see if the ship is off
the stage, and if so, move it to the other side. This wraparound is done on the ship as well
as the bullets, and perhaps even some of the bad guys, so I want to encapsulate it so that I
can perform this wraparound logic on any clip on the stage. Let’s call this function
adjustPosition. It needs to take a movie clip reference as its argument. I show the imple-
mentation of this function in the next section, so for now, let’s just call it inside the
shipExecute function with the ship as the single argument:

471Creating Blow ‘Em Up

adjustPosition(ship);

We can now close the if(!frozen) block:

}

Implementing adjustPosition
We’ve just called the adjustPosition function on the ship; now it’s time to implement it.
Remember that adjustPosition takes one argument—a reference to the object to move:

function adjustPosition(o){

Now we need to test to see if the player has gone past the bottom of the stage:

if(o._y<0)o._y=Stage.height-scoreboard._height;

We match that if with an else to see if the player went off the top of the stage:

else if(o._y>Stage.height-scoreboard._height)o._y=0;

Then we do the same thing for width, concluding by closing the adjustPosition function:

if(o._x<0)o._x=Stage.width;
else if(o._x>Stage.width)o._x=0;

}

If you test your game, you should be able to fly the ship around the stage and view the
scoreboard, as shown in
Figure 8.20.

472 8. Advanced Timing and Trigonometry

Figure 8.20

The ship can now fly around the
stage, even off it. However, the
flames don’t work yet because
we haven’t implemented
setFlame.

Implementing toggleShield
This function is easy enough. If shields are off and the player has at least one shield in his
supply, we turn shields on and make the shield clip visible:

if(shieldCount && !shield){
shield=true;
ship.shield._visible=true;

}

If shields are on, we turn them off and make them invisible:

else{
shield=false;
ship.shield._visible=false;

}

You should now be able to toggle your shields with the Shift key during testing, as shown in
Figure 8.21.

Implementing fireBullet
To implement the fire bullet, we need to make some intervals. That’s because we need a
delay between shots. If we let the player fire a new bullet every time the shipExecute func-
tion is called, the bullets will come out in a stream, far too many for good gameplay. To fix
this, I’m creating a lock on the gun in the form of a variable called fired. This variable,
when true, keeps the entire fireBullet function from executing. When the gun fires, an
interval is set to change fired to false after a number of milliseconds. I set up this millisec-
ond delay in the startGame function as a variable called fireDelay.

473Creating Blow ‘Em Up

Figure 8.21

The shields are now controlled by
the Shift key.

We begin the fireBullet function with a check for the fired variable that locks our gun
between shots:

if(!fired){

If fired is false, we step into the if block and immediately set fired to true because we’re
about to fire a bullet:

fired=true;

Now we need to set up that interval that changes fired back to false:

fireInterval = setInterval(function(){fired=false;
➥clearInterval(fireInterval);},fireDelay);

Then we need to create the bullet and put it into motion. I want the bullets to shoot from
the blue wings on the sides of the ship. The first shot should come out of one wing; then
the next time the player shoots, the shot should come out of the second wing. When the
player has the doubleshot powerup, we need to fire two bullets instead of just one—one
from each wing.

To implement this double shot, I’ve done the bullet firing in a for loop that loops either
once (for a single shot) or twice (for a double shot). Notice that although doubleShot is a
Boolean, it is converted to a number for the mathematical operation:

for(var i=0;i<doubleShot+1;++i){

Now we need to find out where to place the bullet. The best way to do this is to dig inside
the ship clip, into the wing clip, and get its coordinates. Then we can call localToGlobal to
get the actual stage coordinates. We use these stage coordinates to set the new bullet’s posi-
tion. This is all done with the object p that we use as our temporary point for the
localToGlobal call. (For more information on localToGlobal, see Chapter 6.)

p.x = 0; p.y = 0;
if(wingtipToggle) ship.leftTopWing.localToGlobal(p);
else ship.rightTopWing.localToGlobal(p);
wingtipToggle=!wingtipToggle;

The only thing odd about the preceding script is the wingtipToggle variable. This variable is
used to move the bullets from the left wing to the right wing, alternating each shot. By flip-
ping this Boolean variable back and forth, we get the bullets coming out of the wings alter-
nated between wings each shot.

Now it’s time to attach the bullet and position it:

var tempb = bullets.attachMovie(“bullet”, “bullet”+
➥bullets.getNextHighestDepth(), bullets.getNextHighestDepth());

tempb._x= p.x; tempb._y = p.y;

474 8. Advanced Timing and Trigonometry

Finally, we need to give the bullet its direction. After a bullet is fired, it never changes its
flight path. For that reason, we can calculate ahead of time the change in X and the change
in Y that is needed in each iteration of the bullet. After this value is calculated, we can just
increment the bullet’s position by these change variables every iteration. Again, I’m using
trigonometry to determine the changes to X and Y based on the rotation:

tempb.cx = bullet_speed * Math.sin(d2r(ship._rotation));
tempb.cy = -bullet_speed * Math.cos(d2r(ship._rotation));

Notice that I’m using the ship’s rotation in the trigonometry calls. That’s because the bullet
hasn’t been rotated, and because it’s a dot, it doesn’t need to be rotated. Calculating the
change in X and Y for the bullet is a matter of finding the component parts based on the
ship’s current rotation.

We close the for loop that gives us a double shot and then close the (if!fired) block.

}
}

Implementing bulletsExecute
We’ve already set up the interval that calls bulletsExecute in our startGame function. To
implement bulletsExecute, we need to grab a couple of temporary variables to be used in
the process of iterating over all the bullets to update each one. The tb variable is a tempo-
rary bullet reference, and the tbg variable is a temporary bad guy reference. (We need to
refer to bad guys in this function because the bullets must do hit tests against the bad guys.)

var tb;
var tbg;

Now we can use another for in loop to iterate over every bullet in our bullet container
named bullets. For each bullet, we increment its position by adding its cx and cy proper-
ties that we initialized in the fireBullet function. Then we call adjustPosition on the bullet
to get it to flip over the stage when it reaches the end:

for(b in bullets){
tb=bullets[b];
tb._x+=tb.cx;
tb._y+=tb.cy;
adjustPosition(tb);

Now we need to check the bullet’s lifespan to see if it’s ready to disappear. (Bullets disap-
pear after they have been fired and flying in space for a while.) This is done by increment-
ing a property of each bullet called time. If a bullet’s time property ever exceeds
bulletLifeSpan (which was initialized in startGame), the bullet is removed:

if(tb.time++ > bulletLifeSpan)
tb.removeMovieClip();

Finally, we need to do a hit test against all the bad guys. We use another for in loop to get
a reference to each bad guy:

475Creating Blow ‘Em Up

for(bg in badGuys){
tbg=badGuys[bg];

The hit test must be conditioned by the bad guy’s dead property. This dead property is set to
true when the bad guy is shot and stays true until it is removed from the stage. (The bad
guys slowly fade out when they’re killed.)

if(!tbg.dead && tbg.hitTest(tb._x,tb._y)){
hitBadGuy(tbg, normalPowerupPercentage);
tb.removeMovieClip();

}

As you can see, we first test the dead property. If the dead property is false, we do a standard
hit test using the bullet’s position. If the hit test is true, we call hitBadGuy to deal with fad-
ing out the bad guys, and we remove the bullet move clip. We don’t remove the bad guy;
hitBadGuy handles that.

Finally, we close the for in loop that iterates for each bad guy and then close the for in
loop that iterates for each bullet:

}
}

If you test now, you should be able to shoot bullets around the stage, as shown in
Figure 8.22.

476 8. Advanced Timing and Trigonometry

Figure 8.22

The bullets should now be working
properly. Notice how the bullets
move off the stage and onto the
other side of the stage, like the ship.

Implementing hitShip
When a bad guy hits the ship, hitShip is called. This function takes one argument called
damage that indicates how many health points to take off the ship. hitShip is a function with
one major branch: a test for shields. If shields are on, we toggle them (turn them off) and
decrement the shieldCount, which contains the number of shields the player has left:

if(shield){
shieldCount—;
toggleShield();

}

If shields are not on, we turn off double shot, reduce the player’s life by the amount passed
into the function, and call setLife so that the life meter on the scoreboard is displayed cor-
rectly.

else{
doubleShot=false;
life-=damage;
setLife();
if(life<=0)

killShip();
}

Notice that we concluded the else block with a check to see if life is 0 or less; if it is, we
call killShip.

Implementing killShip
As you know, killShip is called when the player dies. But we want to let the player’s ship
explode for a few seconds before bringing up the End Game panel.

To create the explosion effect, we need to set up the intervals that cause our ship pieces to
explode around the screen. We do this in a loop that iterates over the ship.pieces array we
created in startGame. For each piece, we create an interval and place it in the ship.inter-
vals array:

for(var i=0;i<ship.pieces.length;++i)
ship.intervals[i] = setInterval(moveObject,40,ship.pieces[i],

➥getRandom(-10,10),getRandom(-10,10),getRandom(-10,10));

Arguments to be passed to the function called by the interval are entered after the time
amount for the interval. Now that the ship pieces have their intervals, it’s time to set up the
interval that brings up the End Game panel after a few seconds:

endGameInterval = setInterval(endGame,2500);

We also want to disable the ship’s key handlers and set the pressing of the buttons to false
before a call to setFlame that subsequently turns off all the flames:

477Creating Blow ‘Em Up

ship.onKeyUp = ship.onKeyDown = null;
ship.left=ship.right=ship.up=ship.down=false;
setFlame();

If the shield is on, we need to turn it off:

if(shield)toggleShield();

The next four lines remove the intervals that run the ship, bullets, badguys, and powerups,
effectively freezing the game:

clearInterval(shipInterval);
clearInterval(bulletsInterval);
clearInterval(badGuyInterval);
clearInterval(powerupsInterval);

When the game is reset, we want to make sure that all the bullets from the previous game
were removed so that they don’t start up when a new bulletsInterval is created:

for(var b in bullets)
bullets[b].removeMovieClip()

Implementing setFlame
We’ve been calling setFlame for a while now, and it’s time we put an implementation
behind it. All it amounts to are some tests of the direction properties we set in the KeyUp
and KeyDown handlers for the ship. We make the _visible property of the flame clips true or
false depending on which keys the player is pressing:

if(ship.up){ship.leftFlame._visible=ship.rightFlame._visible=true;}
else if(ship.left && !ship.right)
{ship.leftFlame._visible=false;ship.rightFlame._visible=true;}
else if(!ship.left && ship.right)
{ship.leftFlame._visible=true;ship.rightFlame._visible=false;}
else {ship.leftFlame._visible=ship.rightFlame._visible=false;}
if(ship.down)ship.frontFlame._visible=true;
else ship.frontFlame._visible=false;

If you test now, you should see something like Figure 8.23.
The ship’s flame works now.

478 8. Advanced Timing and Trigonometry

Figure 8.23

The ship’s flames now work based on which keys the user is pressing.

Implementing setLife
Recall that setLife is called when the player’s life changes. Its job is to change the size of
the mask used to hide the life bar when the player is hit. The object assigned as a mask in
the lifemeter symbol is named mask so that we can use a path through the scoreboard clip,
into the life clip, into the lifemeter clip, and to the mask clip. Once there, we adjust the
mask’s scale to the ratio between life and lifemax:

function setLife(){
scoreboard.life.lifemeter.mask._xscale = 100*life/lifemax;

}

The ratio between life and lifemax is multiplied by 100 so that it is a percentage instead of
a number between 0 and 1.

Implementing the Ship Explosion Functions
We have three helper functions that we use to set up and handle the pieces of the ship mov-
ing about the stage at explosion. The first is setInitialValues, which copies the coordinates
of each piece of the ship:

function setInitialValues(o){
o.ix=o._x;o.iy=o._y;o.ir=o._rotation;

}

The next helper function is called moveObject, and it takes four arguments. The first argu-
ment is a reference to the object to move, the next two are the changes to X and Y, and the
fourth and final argument is the rotation to apply to the object:

function moveObject(o,x,y,r){
o._x+=x;o._y+=y;o._rotation+=r;

}

Finally, the last helper function is called resetObject and its job is to return the ship pieces
to their initial position to begin a new game:

function resetObject(o){
o._x=o.ix;o._y=o.iy;o._rotation=o.ir;

}

That completes the implementation of the ship. Now it’s time to give the player something
to shoot at.

At this point, the ship is complete, but we don’t have an easy way to test the ship exploding.
To fix this, I added a line to shipKeyDown that trapped for the spacebar. When the spacebar
is pressed, I call hitShip with 10 damage. When the spacebar is pressed 10 times, the ship
dies and I can watch the explosion. Add this line temporarily to the end of the shipKeyDown
function to test this:

if(Key.isDown(Key.SPACE))hitShip(10);

479Creating Blow ‘Em Up

Your ship should now explode as shown in Figure 8.24.

Implementing the Bad Guys
Implementing the bad guys is pretty standard for much of the implementation, but there is
one key area I want to focus on. The way I create waves of bad guys needs to be easily
edited and expanded, so I must keep that in mind while developing the spawnWave and
createBadGuy functions. First, however, I want to take care of the update function for the
bad guys: badGuyExecute.

Implementing badGuyExecute
This short function tests to see if a new wave is needed. A new wave is required when the
bad guy count reaches 0:

if(badGuyCount==0) spawnWave();

Now we iterate over every bad guy using a for in loop. For each bad guy, we call its move
method. This method is attached to each bad guy when we create him. The update func-
tion (badGuyExecute) only calls that move method:

for(bg in badGuys){
badGuys[bg].move();

}

480 8. Advanced Timing and Trigonometry

Figure 8.24

The ship explodes when
its life drops to 0 or
below.

Implementing spawnWave
When no bad guys remain, the badGuyExecute function calls spawnWave. The first thing we
need to do to spawn a new wave is increment the wave variable:

++wave;

Now comes the important part. I want to develop a way to easily create a full wave of bad
guys with one line of script. I want to be able to specify what types of bad guys to create,
how many, and what size for each individual wave, but I don’t want to be required to specify
the details of every wave. In other words, I want to be able to easily hand-program a wave’s
contents, but I also want to be able to leave some out and have Flash automatically generate
a random wave. Let’s define waves 1 through 10 and then leave the default case to handle
all higher waves.

I do this with a switch statement that switches on the wave variable. If the wave is one that I
want to hand-program, I add a case statement for that wave number. If I omit a particular
wave number in my case list, the default case should pick it up. Therefore, I want the
default case to randomly generate a wave for me, but each of the normal case statements
will be a hand-crafted wave.

Before I lay out that switch statement, we need to develop the interface to createBadGuy,
which takes our bad guy request (our order, if you will) and actually creates the bad guys.
We don’t have to implement this function now, but we need to decide on how it should be
called. The following is the general form I have decided upon:

void createBadGuy(badGuyOrder);

The idea is that the badGuyOrder is an array of bad guy requests. Each element of the array is
a request for a certain type of bad guy, at a certain size, in a certain quantity. The
badGuyOrder can be any length. Each element in the bad guy order is an array containing
two or three elements. The first element is the bad guy type, and the second element is the
quantity. The third (optional) element is the scale factor. If this third element is omitted,
100 is assumed.

To create a set of bad guys, we might use a bad guy order array as follows:

[[2,3],[2,3,125]]

This would place two orders for bad guys. The first would create three of the bad guy type 2
with no third argument (implying 100 scale). The second order would create three more
type 2 bad guys, but these three would be scaled up to 125 percent. Therefore, only two
batches of bad guys would be created in this example, but as I said, there should be no limit
to the number of batches that can be given in a bad guy order. Figure 8.25 shows a visual
representation of a bad guy order. After you decide on the order, you can translate it into
an array as shown earlier.

481Creating Blow ‘Em Up

Now that we know how to create a batch of bad guys (or at least how to call the
createBadGuy function), we can look at the switch statement that allows us to program the
different waves. I have programmed the first 10 by hand and given a default case to make a
random wave:

switch(wave){
case 1: createBadGuy([[1,6]]);break;
case 2: createBadGuy([[1,4],[2,2]]);break;
case 3: createBadGuy([[1,2],[1,2,125],[2,2]]);break;
case 4: createBadGuy([[1,4,125],[2,4]]);break;
case 5: createBadGuy([[2,3],[2,3,125]]);break;
case 6: createBadGuy([[3,4]]);break;
case 7: createBadGuy([[1,2],[2,4],[3,2]]);break;
case 8: createBadGuy([[2,4,150],[3,2,125]]);break;
case 9: createBadGuy([[1,2],[2,4],[3,2]]);break;
case 10: createBadGuy([[1,3],[2,4],[3,3]]);break;
default:

var a = new Array();
for(var i=0;i<3;++i){

var q = getRandom(3,5);
var s = getRandom(70,150);
a[i]=[i+1,q,s];

}
createBadGuy(a);
break;

}

As you can see, the first 10 case statements make preprogrammed calls to createBadGuy, but
the default case uses random numbers to generate a wave.

482 8. Advanced Timing and Trigonometry

Figure 8.25

The badGuyArray is
used to place an order
for multiple batches of
bad guys.

You could, of course, go into that switch
statement and program say, wave 15, by
using a case statement for wave 15 and then
giving an order to createBadGuy in it. The
default case would be called for any waves
that are not programmed with their own
case statement. Notice how easy it is to pro-
gram a given wave.

Implementing
createBadGuy
We’ve already placed the orders for the bad
guys, and we’ve decided how the bad guy
order will be broken up. Remember that
the argument to createBadGuy is named
badGuyOrder, and it contains at least one
array with a batch order in it. The first thing
to do is set up a loop to iterate for each batch
in the bad guy order:

for(var i=0;i<badGuyOrder.length;++i){

Now we extract the bad guy type from the first element of the current batch (current iter-
ate of the previous for loop):

badGuyNumber = badGuyOrder[i][0];

Then we extract the scale from the order:

scale = badGuyOrder[i][2];

Finally, we create a temporary variable to hold the bad guys we are about to create and then
develop a for loop to iterate for the quantity of this batch of bad guys:

var bg; for(var j=0;j<badGuyOrder[i][1];++j){

Inside this loop, we need to increment the badGuyCount, create the bad guy, and scale him
(for starters):

badGuyCount++;
bg=badGuys.attachMovie(“badGuy”+badGuyNumber,

➥”bg”+badGuys.getNextHighestDepth(), badGuys.getNextHighestDepth());
bg._xscale=bg._yscale=scale;

We need to scale the bad guy. In some waves (levels), we might have no third argument,
meaning that no scale was predefined. In this case, if we tried to call on the third argument,
it would return undefined. We could write a check for cases in which there is a third argu-
ment and only set the scale then but, in reality, passing undefined to the scale properties
does not affect the scale in any way. Therefore, although the condition would be good style,
it is completely unneeded.

483Creating Blow ‘Em Up

TIP
Programming the various waves is
an example of adding content to
your game.As a game developer, you
should always strive to make the
addition of content to your game as
simple as possible.The mechanics of
the game should be hidden from the
content generation as much as pos-
sible.That allows you and others to
add content to your game easily
without the potential of altering
your game engine.

We need to initialize a score property on the bad guy so that when he dies, we know how
much to increment the player’s score. Let’s use the bad guy’s type number times a scale
factor:

bg.score = badGuyNumber*10

Now we need to position our bad guy. We don’t want him to be generated on top of the
ship, so we create random coordinates inside a loop that hit tests for the ship. If the new
bad guy collides with the ship, we need to keep the loop going until the random coordi-
nates place it at a safe distance:

do{
bg._x=getRandom(0,Stage.width);
bg._y=getRandom(0,Stage.height);

}while(ship.hitTest(bg._x,bg._y));

So far, everything we’ve done is the same regardless of the bad guy type we’re creating
(other than the actual attachMovie call). Now it’s time to give the new bad guy a custom
behavior based on his type. To do this, I use a switch statement to switch on the type of bad
guy in this batch:

switch(badGuyNumber){

The first bad guy, type 1, is handled first:

case 1:

Let’s set its speed, damage, and radius2, which we use for the bounding circle hit test with
the ship:

bg.speed = 1.5 + wave*.25;
bg.damage = 25;
bg.radius2 = (bg._width/2)*(bg._width/2);

484 8. Advanced Timing and Trigonometry

NOTE
You need to add the getRandom method that we created earlier in the book for
this code to work. Here’s the code for the function:
function getRandom(minimum, maximum){

return Math.floor(Math.random() * (maximum - minimum +1) + minimum);
}

Now it’s time to give bad guy 1 his move method. I want this bad guy to turn to face the
player at all times and make a direct beeline for him:

bg.move=function(){
this._rotation = r2d(

➥Math.atan2(_root.ship._y-this._y,_root.ship._x-this._x));
this._x += this.speed*Math.sin(d2r(this._rotation+90));
this._y -= this.speed*Math.cos(d2r(this._rotation+90));
hitTestShip(this);

}
break;

As you can see, I’m using trigonometry to find both the rotation and change to X and Y.
That is not necessarily required. I could have set up things using the scaling trick I demon-
strated early in this chapter, but the other bad guys swing toward the player using trigonom-
etry. Therefore, I left this bad guy (who goes straight for the player) using trigonometry for
consistency. Now it’s time to create bad guy 2. We do the same thing by setting the speed,
damage, and radius2.

case 2:
bg.speed = 3.0 + wave*.35;
bg.damage = 20;
bg.radius2 = (bg._width/2)*(bg._width/2);

This bad guy swings toward the player instead of moving straight. I want him to be able to
swing either direction, so let’s create a property called dir that is set to some offset that
gives the swing its functionality. You can see dir do its job when we create the move method
for this bad guy in a moment:

if(getRandom(0,1))bg.dir=45;
else bg.dir=135;

Notice that we’re making dir either 45 or 135. That is the amount of swing the bad guy
takes going toward the player. 45 represents a left swing, and 135 represents a right swing.
The actual direction toward the player is 90 degrees. This will all make sense when we
implement the move function for this bad guy, given next:

bg.move=function(){
this._rotation = r2d(

485Creating Blow ‘Em Up

NOTE
We’re using the property radius2, which is the radius squared and not radius.
Also notice that we’re squaring the radius.That’s because I want to use the
shortcut distance formula dist2.

➥Math.atan2(_root.ship._y-this._y,_root.ship._x-this._x));
this._x += this.speed*

➥Math.sin(d2r(this._rotation+this.dir));
this._y -= this.speed*

➥Math.cos(d2r(this._rotation+this.dir));
hitTestShip(this);

}
break;

Notice the way we are updating the X and Y coordinates of the bad guy. We’re adding dir
to the rotation before we plug it into the trigonometry function. That results in a swing type
motion.

Let’s finish it off with the third bad guy. This one is nearly identical to the second bad guy
except that it has a higher speed and lower damage and its swing variation is a bit larger
(55 and 145 instead of 45 and 135):

case 3:
bg.speed = 3.5 + wave*.45;
bg.damage = 15;
bg.radius2 = (bg._width/2)*(bg._width/2);
if(getRandom(0,1))bg.dir=45;
else bg.dir=135;
bg.move=function(){

this._rotation = r2d(Math.atan2(_root.ship._y-
➥this._y,_root.ship._x-this._x));

this._x += this.speed*
➥Math.sin(d2r(this._rotation+this.dir));

this._y -= this.speed*
➥Math.cos(d2r(this._rotation+this.dir));

hitTestShip(this);
}
break;

Now we close the switch statement because
all three bad guy types are defined:

}

We close the loop that iterates for each bad
guy in the batch:

}

Finally, we close the loop that iterates for each
batch of bad guys in the order:

}

486 8. Advanced Timing and Trigonometry

TIP
At this point, it might be a good idea
to add a default case that makes bad
guy type 1.That way if the guy pro-
gramming waves asks for a bad guy
number that isn’t implemented, the
default type will be created.

Notice how easy it would be to add a new bad guy type. All we would have to do is create
the symbol, add a new case statement for the bad guy type, preprogram some waves to use
it, and change the default wave creation algorithm to take advantage of it as well. Keeping
things extensible in a game like this is important. Interesting bad guys and interesting
powerups are what make the game fun to play. Adding tons of different kinds is a good way
to keep the player interested.

At this point, you can test each bad guy by setting up your own custom waves.

Implementing hitTestShip
Notice that the move methods for each bad guy had a call to hitTestShip with a reference to
that badguy’s movie clip (bg) as the functions argument as their last line. Let’s use the
bounding circle we set up with radius2 when we created the bad guy. That means a distance
check. If the check is true, we call hitShip with the bad guy’s damage. We also call
hitBadGuy:

if(dist2(bg,ship) < bg.radius2){
hitShip(bg.damage);
hitBadGuy(bg, 0);

}

Notice that hitBadGuy takes two arguments. The first is a reference to the bad guy that was
hit, and the second is the percentage of a powerup being dropped. Because this test is
being done inside hitTestShip, it only happens when the player runs into the bad guys. I
don’t want powerups being dropped when the player runs into the enemy, only when he
kills the enemy with bullets. For that reason, I’m sending in a powerup percentage of 0.

Implementing hitBadGuy
To implement a bad guy getting hit, we first need to recall that the two arguments to
hitBadGuy were bg (a bad guy reference) and powerupPercentage (change of a powerup
being dropped).

We then decrement the bad guy count and increment the score:

badGuyCount—;
score+= bg.score*wave;

Now we want the bad guy to stay around for a little while so that we can fade him out. But
we don’t want him moving after the player anymore. The easy way to break his movement
functionality is to remove his move function and replace it with null. That way when
badGuysExecute is called, the bad guy’s move function (now set to null) does nothing:

bg.move = null;

We set the bad guy’s dead property to true. This is necessary for the bullet hit testing; we
don’t want bullets hitting bad guys who are already dead (see the bulletsExecute function):

bg.dead = true;

487Creating Blow ‘Em Up

Now we need to set up the bad guy fadeout. I’ve chosen to do this on an enterFrame event
because the fade is not tied to gameplay; it’s tied to rendering rate. Inside the onEnterFrame
handler, I want to reduce the bad guy’s alpha by 4 and then see if it’s 0 or less. When the
alpha has reached 0 or less, I remove the bad guy clip:

bg.onEnterFrame = function(){
if((this._alpha -=4) <= 0)

this.removeMovieClip();
}

Finally, I want to check to see if a powerup should be dropped. I do this by creating a ran-
dom number between 0 and 100 and comparing it to the powerupPercentage. When the ran-
dom number is less than the powerupPercentage given as an argument to hitBadGuy, I call
createPowerup:

if(getRandom(0,100) < powerupPercentage)createPowerup(bg);

If you test now, almost everything should be working. You should be able to destroy the bad
guys, play through multiple waves, and be destroyed by the bad guys, as shown in Figure 8.26.

Implementing the Powerups
The powerups are pretty simple. They just sit there on the stage waiting for the player to fly
over them. When activated, powerups usually set some variable to true and the rest of the
game engine deals with it. This is true of things like the freeze powerup and the double

488 8. Advanced Timing and Trigonometry

Figure 8.26

The bad guys are
working now; everything
looks great except that
there are no powerups
yet.

shot powerup. Both set a variable to true, and you’ve already seen the way these variables
do things like freeze the execution of the shipExecute function when the player is frozen
and shoot two shots instead of one in the fireBullet function.

The first thing to implement is the creation of the powerups.

Implementing createPowerup
The function createPowerup takes one argument, bg, which is a reference to the bad guy
that is in the position where the powerup will be placed. To create a powerup, we need to
randomly pick one from the total number of powerup types available to us:

var pn = getRandom(1,4);

If we later add new powerups to our game, that random number call must change to reflect
the new powerup type.

Now that we know which powerup to make, we can attach it:

var p = powerups.attachMovie(“powerup”+pn,
➥ powerups.getNextHighestDepth(), powerups.getNextHighestDepth());

We need to record the powerup type for later, when the player runs over it:

p.powerType = pn;

We position the powerup where the bad guy was sitting. Recall that the argument to
createPowerup was a reference to the bad guy who just died:

p._x = bg._x;
p._y = bg._y;

We now set a property of the powerup named time, which we use to remove the powerup
after it’s been sitting too long on the stage:

p.time = powerupLifeSpan;

Finally, I want the powerup to give the player a bit of a score bonus when it’s captured:

p.score = 5*pn;

Implementing powerupExecute
Now that we can create powerups, we should implement their update function, which was
attached to an interval back in startGame. The powerupExecute function needs to iterate over
every powerup in the game. I do this with the usual for in loop:

for(pu in powerups){
var p = powerups[pu];

We need to reduce the time for this powerup, bringing it one step closer to going away. We
also need to check to see if it’s time for this powerup to go away:

489Creating Blow ‘Em Up

p.time—;
if(p.time<=0)

p.removeMovieClip();

Finally, we want to hit test against the ship to see if this powerup has been run over:

if(ship.hitTest(p._x, p._y)){

If the hit test is true, we need to check the shields. Remember that the powerup is not cap-
tured if the player has his shields on. Instead, both the shield and the powerup are
destroyed. We start out by checking whether the shield is on:

if(shield){

If the shield is on, we toggle the shield and reduce the shield count:

toggleShield();
shieldCount—;

}

If the shields are not on, we increment the score and then switch on the powerup type to
give the correct behavior:

else{
score+=p.score;
switch(p.powerType){

The first powerup type, powerup 1, indicates a double shot:

case 1: doubleShot = true;break;

The second powerup type, powerup 2, indicates additional life:

case 2: if(life<lifemax)life+=10; setLife();break;

The third powerup type, powerup 3, indicates an additional shield:

case 3: shieldCount++;break;

The fourth and final powerup type freezes the player. To freeze property, we need to set
frozen to true, but we also need to set up an interval to take it off:

case 4: frozen=true;
➥frozenInterval=setInterval(function(){frozen=false;
➥clearInterval(frozenInterval);},2000);break;

Because there are only four powerup types right now and we’ve implemented the behavior
for all four, we can close the switch statement:

}

We can close the else statement that executed when shields were off:

}

490 8. Advanced Timing and Trigonometry

At this point, we can remove the powerup because it will be disposed of regardless of the
condition of the shields:

p.removeMovieClip();

Finally, we can close the hit test block and the iteration over all the powerups (for in
loop):

}
}

That concludes the implementation of the powerups and the implementation of the entire
game, excluding the sound effects. You can test your game now. You should see everything
working perfectly, minus sound. Your game should look like Figure 8.27 with powerups
being left by some dead bad guys.

Sound
As usual, I’ve left this largely trivial task until last. The sound manager is identical to previ-
ous chapters and shouldn’t present problems for you. Because the sound manager is so sim-
ilar to the way I do sounds in all the games, I’m not going to give you the code here. The
sound manager code can be seen in the complete code listing in a few more sections. As
usual, it’s simply a function called createSoundManager that sets up the various sounds and
gets everything ready to play.

There are six sounds in Blow ‘Em Up, as listed next:

491Creating Blow ‘Em Up

Figure 8.27

Powerups are now
working.They are
dropped from bad guys
sometimes, and each
does something
different to the player.

■ badGuyHit. Played when a bad guy is shot by a bullet or is collided with the ship. This sound
event is started in the hitBadGuy function.

■ fireBullet. Played when a bullet is fired. This sound event is started in the fireBullet func-
tion.

■ playerHit. Played when a bad guy collides with the ship and the shields are not up. This
sound event is started in the hitShip function.

■ playerKilled. Played when the player dies. This sound event is started in the killShip func-
tion.

■ powerup. Played when the ship gathers a powerup, but only if the shields are off. This sound
event is started in the powerupExecute function.

■ shieldHit. Played when the shield is lost, either through running into a powerup or into a
bad guy. This sound event is started in both the powerupExecute and hitShip functions.

Because the starting of these events is trivial and you’ve seen it done a number of times
now, I’m going to forgo the details. However, each mySound.start method is listed properly
in the complete code listing at the end of this chapter.

Testing
Oddly enough, I can’t seem to find any real bugs in the game. However, this is a good time
to tune the game constants like speeds and damages of things, as well as add in new bad
guys and powerups. Feel free to add to the game’s code and implement your own ideas for
bad guys and powerups.

Complete Code Listing
What follows is a complete listing of the game’s code. It is comprehensive with a few excep-
tions. I have added a stop call to the button symbol’s timeline so that I don’t have to do it
in script, even though I still do sometimes out of habit. I’ve also omitted code from the
frame counter, which was described in Chapter 7.

initGame();
function initGame(){

Stage.align=”TL”
Stage.align = “noscale”;
attachMovie(“instructions”,”instructions”,0,{_x:Stage.width/2,_y:Stage.height/2});
instructions.myText.text = “Arrow Keys to Move\nControl to Fire\n

➥Shift Toggles Shields\nTurn off shields to\ngather powerups\n
➥Alternate Move: (u,h,j,n)\nAlternate Fire: g”;

instructions.startButton.stop();
instructions.startButton.myText.text = “start”;
instructions.startButton.onRelease = function(){

instructions.removeMovieClip();
startGame();

}

492 8. Advanced Timing and Trigonometry

instructions.attachMovie(“powerupKey”,”powerupKey”,1,{_x:50,_y:-100});
}
function startGame(){

bullet_depth = 10;
badGuy_depth = 99;
ship_depth = 100;
powerup_depth = 101;
scoreboard_depth = 2000;
instructions_depth = 2001;
playerTick=40;
bulletTick=100;
badGuyTick=100;
powerupTick=120;
ship_rotation_speed = 9;
ship_speed = 8;
bullet_speed = 25;
bulletLifeSpan = 8;
fireDelay = 250;
doubleShot=false
life=100;
lifemax=100;
initialShieldCount = 2;
shieldCount = initialShieldCount;
wave=0;
score=0;
badGuyCount=0;
maxBadGuys = 16;
powerupLifeSpan = 35;
normalPowerupPercentage = 50;
attachMovie(“ship”,”ship”,ship_depth);
ship._x = Stage.width/2; ship._y = Stage.height/2;
ship.shield._visible = false;
ship.onKeyDown = shipKeyDown;
ship.onKeyUp = shipKeyUp;
Key.addListener(ship);
setFlame();
ship.intervals = new Array(8);
ship.pieces = new Array(8);
ship.pieces.push(ship.leftTopBody);
ship.pieces.push(ship.leftBottomBody);
ship.pieces.push(ship.rightTopBody);
ship.pieces.push(ship.rightBottomBody);
ship.pieces.push(ship.leftTopWing);
ship.pieces.push(ship.leftBottomWing);
ship.pieces.push(ship.rightTopWing);
ship.pieces.push(ship.rightBottomWing);

493Creating Blow ‘Em Up

for(var i=0;i<ship.pieces.length;++i)
setInitialValues(ship.pieces[i]);

shipInterval = setInterval(shipExecute, playerTick);
createEmptyMovieClip(“bullets”,bullet_depth);
createEmptyMovieClip(“badGuys”,badGuy_depth);
createEmptyMovieClip(“powerups”, powerup_depth);
bulletsInterval = setInterval(bulletsExecute, bulletTick);
badGuyInterval = setInterval(badGuyExecute, badGuyTick);
powerupsInterval = setInterval(powerupExecute, powerupTick);
attachMovie(“scoreboard”,”scoreboard”,scoreboard_depth,{_y:Stage.height});

➥p=new Object();
createSoundManager();

}
function resetGame(){

instructions.removeMovieClip();
for(var i=0;i<ship.intervals.length;++i){

clearInterval(ship.intervals[i]);
resetObject(ship.pieces[i]);

}
for(bg in badGuys)badGuys[bg].removeMovieClip();
for(pu in powerups)powerups[pu].removeMovieClip();
badGuyCount=0;
ship._x = Stage.width/2; ship._y = Stage.height/2;
ship._rotation = 0;
ship.onKeyDown = shipKeyDown;
ship.onKeyUp = shipKeyUp;
shipInterval = setInterval(shipExecute, playerTick);
life=lifemax;
setLife();
shieldCount = initialShieldCount;
wave=0;
score=0;
doubleShot=false;
frozen=false;
bulletsInterval = setInterval(bulletsExecute, bulletTick);
badGuyInterval = setInterval(badGuyExecute, badGuyTick);
powerupsInterval = setInterval(powerupExecute, powerupTick);

}
function endGame(){

clearInterval(endGameInterval);
attachMovie(“instructions”,”instructions”,instructions_depth);
instructions.myText.text=”You’re dead\nscore = “+score+”\nwave = “+wave;
instructions._x = Stage.width/2;
instructions._y = Stage.height/2;
instructions.startButton.stop();

494 8. Advanced Timing and Trigonometry

instructions.startButton.myText.text = “reset”;
instructions.startButton.onRelease = resetGame;

}
function badGuyExecute(){

if(badGuyCount==0) spawnWave();
for(bg in badGuys){

badGuys[bg].move();
}

}
function spawnWave(){

++wave;
switch(wave){

case 1: createBadGuy([[1,6]]);break;
case 2: createBadGuy([[1,4],[2,2]]);break;
case 3: createBadGuy([[1,2],[1,2,125],[2,2]]);break;
case 4: createBadGuy([[1,4,125],[2,4]]);break;
case 5: createBadGuy([[2,3],[2,3,125]]);break;
case 6: createBadGuy([[3,4]]);break;
case 7: createBadGuy([[1,2],[2,4],[3,2]]);break;
case 8: createBadGuy([[2,4,150],[3,2,125]]);break;
case 9: createBadGuy([[1,2],[2,4],[3,2]]);break;
case 10: createBadGuy([[1,3],[2,4],[3,3]]);break;
default:

var a = new Array();
for(var i=0;i<3;++i){

var q = getRandom(3,5);
var s = getRandom(70,150);
a[i]=[i+1,q,s];

}
createBadGuy(a);
break;

}
}
////////////////////////////////////
//create a wave of bad guys. badGuyOrder is a 2d array
//each element of badGuyOrder is an array with 2 or 3 integers
//first integer is the bad guy number, second is the quantity, third (optional)
➥is the scale
//if scale is left out, 100 is assumed.
function createBadGuy(badGuyOrder){

for(var i=0;i<badGuyOrder.length;++i){
badGuyNumber = badGuyOrder[i][0];
scale = badGuyOrder[i][2];
var bg;
for(var j=0;j<badGuyOrder[i][1];++j){

495Creating Blow ‘Em Up

badGuyCount++;
bg=badGuys.attachMovie(“badGuy”+badGuyNumber,

➥”bg”+badGuys.getNextHighestDepth(),badGuys.getNextHighestDepth());
bg._xscale = bg._yscale = scale;
bg.score = badGuyNumber*10;
do{

bg._x=getRandom(0,Stage.width);
bg._y=getRandom(0,Stage.height);

}while(ship.hitTest(bg._x,bg._y));
switch(badGuyNumber){

case 1:
bg.speed = 1.5 + wave*.25;
bg.damage = 25;
bg.radius2 = (bg._width/2)*(bg._width/2);
bg.move=function(){

this._rotation = r2d(Math.atan2(_root.ship._y-this._y,
➥_root.ship._x-this._x));

this._x += this.speed*Math.sin(d2r(this._rotation+90));
this._y -= this.speed*Math.cos(d2r(this._rotation+90));
hitTestShip(this);

}
break;

case 2:
bg.speed = 3.0 + wave*.35;
bg.damage = 20;
bg.radius2 = (bg._width/2)*(bg._width/2);
if(getRandom(0,1))bg.dir=45;
else bg.dir=135;
bg.move=function(){

this._rotation = r2d(Math.atan2(_root.ship._y-this._y,
➥_root.ship._x-this._x));

this._x += this.speed*Math.sin(d2r(this._rotation+this.dir));
this._y -= this.speed*Math.cos(d2r(this._rotation+this.dir));
hitTestShip(this);

}
break;

case 3:
bg.speed = 3.5 + wave*.45;

bg.damage = 15;
bg.radius2 = (bg._width/2)*(bg._width/2);
if(getRandom(0,1))bg.dir=55;
else bg.dir=145;
bg.move=function(){

this._rotation = r2d(Math.atan2(_root.ship._y-this._y,
➥_root.ship._x-this._x));

496 8. Advanced Timing and Trigonometry

this._x += this.speed*Math.sin(d2r(this._rotation+this.dir));
this._y -= this.speed*Math.cos(d2r(this._rotation+this.dir));
hitTestShip(this);

}
break;

}
}

}
}
function hitTestShip(bg){

if(dist2(bg,ship) < bg.radius2){
hitShip(bg.damage);
hitBadGuy(bg, 0);

}
}
function hitBadGuy(bg, powerupPercentage){

badGuyCount—;
score+= bg.score*wave;
bg.move = null;
bg.dead = true;
bg.onEnterFrame = function(){

if((this._alpha -=4) <= 0)
this.removeMovieClip();

}
if(getRandom(0,100) < powerupPercentage)createPowerup(bg);
soundManager.badGuyHit.mySound.start();

}
function powerupExecute(){

for(pu in powerups){
var p = powerups[pu];
p.time—;
if(p.time<=0)

p.removeMovieClip();
if(ship.hitTest(p._x, p._y)){

if(shield){
toggleShield();
shieldCount—;
soundManager.shieldHit.mySound.start();

}
else{

soundManager.powerup.mySound.start();
score+=p.score;
switch(p.powerType){

case 1: doubleShot = true;break;
case 2: if(life<lifemax)life+=10; setLife();break;

497Creating Blow ‘Em Up

case 3: shieldCount++;break;
case 4: frozen=true;

➥frozenInterval=setInterval(function(){frozen=false;
➥clearInterval(frozenInterval);},2000);break;

}
}
p.removeMovieClip();

}
}

}
function createPowerup(bg){

var pn = getRandom(1,4);
var p = powerups.attachMovie(“powerup”+pn, powerups.getNextHighestDepth(),

➥powerups.getNextHighestDepth());
p.powerType = pn;
p._x = bg._x;
p._y = bg._y;
p.time = powerupLifeSpan;
p.score = 5*pn;

}
function shipKeyDown(){

k=Key.getCode();
if(k==Key.LEFT||k==Key.RIGHT||k==Key.UP||k==Key.DOWN||k==85||k==72||k==74||k==78){

if(k==Key.DOWN||k==78)ship.down=true;
else if(k==Key.LEFT||k==72)ship.left=true;
else if(k==Key.RIGHT||k==74)ship.right=true;
else if(k==Key.UP||k==85)ship.up=true;
setFlame();

}
else if(k==Key.SHIFT)toggleShield();

}
function shipKeyUp(){

k=Key.getCode();
if(k==Key.LEFT||k==Key.RIGHT||k==Key.UP||k==Key.DOWN||k==85||k==72||k==74||k==78){

if(k==Key.DOWN||k==78)ship.down=false;
else if(k==Key.LEFT||k==72)ship.left=false;
else if(k==Key.RIGHT||k==74)ship.right=false;
else if(k==Key.UP||k==85)ship.up=false;
setFlame();

}
else if(k==Key.SHIFT)shieldOff();

}
function shipExecute(){

if(!frozen){
if(ship.left)

ship._rotation-=ship_rotation_speed;

498 8. Advanced Timing and Trigonometry

if(ship.right)
ship._rotation+=ship_rotation_speed;

if(!ship.down && ship.up){
ship._x += ship_speed * Math.sin(d2r(ship._rotation));
ship._y -= ship_speed * Math.cos(d2r(ship._rotation));

}
else if(ship.down && !ship.up){

ship._x -= (ship_speed/4) * Math.sin(d2r(ship._rotation));
ship._y += (ship_speed/4) * Math.cos(d2r(ship._rotation));

}
if(Key.isDown(Key.CONTROL)||Key.isDown(71))fireBullet();
adjustPosition(ship);

}
}
function toggleShield(){

if(shieldCount && !shield){
shield=true;
ship.shield._visible=true;

}
else{

shield=false;
ship.shield._visible=false;

}
}
function fireBullet(){

if(!fired){
soundManager.fireBullet.mySound.start();
fired=true;
fireInterval = setInterval(function(){fired=false;

➥clearInterval(fireInterval);},fireDelay);
for(var i=0;i<doubleShot+1;++i){

p.x = 0; p.y = 0;
if(wingtipToggle) ship.leftTopWing.localToGlobal(p);
else ship.rightTopWing.localToGlobal(p);
wingtipToggle=!wingtipToggle;
var tempb = bullets.attachMovie(“bullet”,

➥”bullet”+bullets.getNextHighestDepth(),bullets.getNextHighestDepth());
tempb._x= p.x; tempb._y = p.y;
tempb.cx = bullet_speed * Math.sin(d2r(ship._rotation));
tempb.cy = -bullet_speed * Math.cos(d2r(ship._rotation));
tempb.time=0

}
}

}
function bulletsExecute(){

var tb;

499Creating Blow ‘Em Up

var tbg;
for(b in bullets){

tb=bullets[b];
tb._x+=tb.cx;
tb._y+=tb.cy;
adjustPosition(tb);
if(tb.time++ > bulletLifeSpan)

tb.removeMovieClip();
for(bg in badGuys){

tbg=badGuys[bg];
if(!tbg.dead && tbg.hitTest(tb._x,tb._y)){

hitBadGuy(tbg, normalPowerupPercentage);
tb.removeMovieClip();

}
}

}
}
function hitShip(damage){

if(shield){
shieldCount—;
toggleShield();
soundManager.shieldHit.mySound.start();

}
else{

doubleShot=false;
life-=damage;
setLife();
if(life<=0)

killShip();
soundManager.playerHit.mySound.start();

}
}
function killShip(){

for(var i=0;i<ship.pieces.length;++i)
ship.intervals[i] = setInterval(moveObject,40,ship.pieces[i],

➥getRandom(-10,10),getRandom(-10,10),getRandom(-10,10));
endGameInterval = setInterval(endGame,2500);
ship.onKeyUp = ship.onKeyDown = null;
ship.left=ship.right=ship.up=ship.down=false;
setFlame();
if(shield)toggleShield();
clearInterval(shipInterval);
clearInterval(bulletsInterval);
clearInterval(badGuyInterval);
clearInterval(powerupsInterval);
for(var b in bullets)

500 8. Advanced Timing and Trigonometry

bullets[b].removeMovieClip()
soundManager.playerKilled.mySound.start();

}
function setFlame(){

if(ship.up){ship.leftFlame._visible=ship.rightFlame._visible=true;}
else if(ship.left && !ship.right){ship.leftFlame._visible=false;

➥ship.rightFlame._visible=true;}
else if(!ship.left && ship.right){ship.leftFlame._visible=true;

➥ship.rightFlame._visible=false;}
else {ship.leftFlame._visible=ship.rightFlame._visible=false;}
if(ship.down)ship.frontFlame._visible=true;
else ship.frontFlame._visible=false;

}
function setLife(){

scoreboard.life.lifemeter.mask._xscale = 100*life/lifemax;
}
function setInitialValues(o){

o.ix=o._x;o.iy=o._y;o.ir=o._rotation;
}
function moveObject(o,x,y,r){

o._x+=x;o._y+=y;o._rotation+=r;
}
function resetObject(o){

o._x=o.ix;o._y=o.iy;o._rotation=o.ir;
}
function adjustPosition(o){

if(o._y<0)o._y=Stage.height-scoreboard._height;
else if(o._y>Stage.height-scoreboard._height)o._y=0;
if(o._x<0)o._x=Stage.width;
else if(o._x>Stage.width)o._x=0;

}
function d2r(d){

return d*Math.PI/180;
}
function r2d(r){

return 180*r/Math.PI;
}
function getRandom(minimum, maximum){

return Math.floor(Math.random() * (maximum - minimum +1) + minimum);
}
function dist2(o1,o2){

return Math.pow(o1._x-o2._x, 2) + Math.pow(o1._y-o2._y, 2)
}
function dist(o1,o2){

return Math.sqrt(dist2(o1,o2));
}

501Creating Blow ‘Em Up

function createSoundManager(){
var sound_depth = 1;
createEmptyMovieClip(“soundManager”,soundManager_depth);
soundManager.createEmptyMovieClip(“badGuyHit”, sound_depth++);
soundManager.badGuyHit.mySound = new Sound(soundManager.badGuyHit);
soundManager.badGuyHit.mySound.attachSound(“badGuyHit.wav”);
soundManager.badGuyHit.mySound.setVolume(50);
soundManager.createEmptyMovieClip(“fireBullet”, sound_depth++);
soundManager.fireBullet.mySound = new Sound(soundManager.fireBullet);
soundManager.fireBullet.mySound.attachSound(“fireBullet.wav”);
soundManager.createEmptyMovieClip(“playerHit”, sound_depth++);
soundManager.playerHit.mySound = new Sound(soundManager.playerHit);
soundManager.playerHit.mySound.attachSound(“playerHit.wav”);
soundManager.createEmptyMovieClip(“playerKilled”, sound_depth++);
soundManager.playerKilled.mySound = new Sound(soundManager.playerKilled);
soundManager.playerKilled.mySound.attachSound(“playerKilled.wav”);
soundManager.createEmptyMovieClip(“powerup”, sound_depth++);
soundManager.powerup.mySound = new Sound(soundManager.powerup);
soundManager.powerup.mySound.attachSound(“powerup.wav”);
soundManager.createEmptyMovieClip(“shieldHit”, sound_depth++);
soundManager.shieldHit.mySound = new Sound(soundManager.shieldHit);
soundManager.shieldHit.mySound.attachSound(“shieldHit.wav”);

}

Conclusion
The things we’ve talked about this chapter, such as advanced timing and trigonometry, are
essential to creating complex games. In fact, they are essential to creating even intermedi-
ate complexity games, as you’ve just seen. However, you don’t have to be a master of
trigonometry to use it, as this chapter has shown. By knowing a few things about right trian-
gles, you can deduce most of what you need to do quite easily.

It’s time to move back into the world of theory to learn our last big lesson in coding style.
Now that our games are getting to be many hundreds of lines long, we should start employ-
ing a powerup programming technique: Object-Oriented Programming (OOP).

502 8. Advanced Timing and Trigonometry

