
157

GD Graphics
Overview

chapter 8

■ What Is GD?

■ Installing GD

■ Creating an Image

■ Drawing Shapes on the Canvas

■ Manipulating Color Information

■ Adding Text to Images

■ Resizing Images

Boutell’s GD library is a great tool that provides you with ways to manipulate
graphics on the fly. In this chapter you will be learning just that. You will start off
by learning how to create images and draw simple shapes on the canvas. Then you

will learn how to manipulate the color information of an image, add text to an image, and,
finally, how to resize an image. This knowledge will allow you to add cool graphics on the
fly to your on-line game.

What Is GD?
GD is a C graphics library that allows you to create and manipulate .jpegs, .pngs, and
.wbmps. What’s that you say? No support for .gifs? That is correct. There used to be a GD
library out there at one time that supported the .gif file format, but since Unisys (the com-
pany that owns the patent on LWZ compression that .gifs use) changed their licensing
agreements, GD has stopped supporting the .gif file format. This could change in the next

08 PHP_GP CH08 2/9/04 3:21 PM Page 157

year, because Boutell (the company that makes the GD library) is planning to support .gifs
as soon as the patent expires. Meanwhile, have no fear because .pngs support all of the fea-
tures of a .gif (as was discussed in Chapter 3).

Installing GD
Just in case you missed installing the GD library when you were setting up PHP, I’ll
quickly go over it again. I will also show you a great little chunk of code that you can use
to load the library dynamically.

To install GD on a Linux or UNIX installation you will need to recompile PHP with
the --with-gd option. You can also compile the GD library as a shared object so you can
load the GD library dynamically whenever you need it. To do this you would use the
--with-gd=shared option. Then, to load in the library dynamically at run time, you would
use the following line of code:

dl(‘gd.so’);

To install GD on a Windows platform you need to copy the php_gd2.dll that came with
the installation package into the extensions directory specified in the php.ini file. Then
you will need to edit the php.ini file and uncomment the following line:

extension=php_gd2.dll

This will enable access to the GD library. If you would like to load the extension dynami-
cally with script you may do so with the following line of code:

dl(‘php_gd2.dll’);

C a u t i o n

In order to dynamically load an extension, the shared object file (UNIX) or the dll file (Windows)
must be in the extensions directory specified in the php.ini file. If it is not, then the loading of the
extension will fail and none of the functions will be available to your game.

Let’s say you don’t know if the server you are hosting your files on is a UNIX or a Win-
dows server. You can create a dynamically loading script that will work on either platform
very easily. Just take a look at the following code:

<?php
if(!extension_loaded(‘gd’))
{

if(strtoupper(substr(PHP_OS, 3)) == “WIN”)
{

dl(‘php_gd2.dll’);

Chapter 8 ■ GD Graphics Overview158

08 PHP_GP CH08 2/9/04 3:21 PM Page 158

}
else
{

dl(‘gd.so’);
}

}
?>

This handy little chunk of code will work for any extension—this example just happens
to be for the GD library. The first step is to see if the extension is already loaded. If the
extension is loaded then why would you want to do anything else? If, however, the exten-
sion is not loaded then you will need to determine what platform you are on and load the
proper file. To determine what OS the PHP script is living on you will need to use the
PHP_OS constant. This returns the information about the current OS. If you are on a
Windows platform the first three characters of the string will be “WIN”. If you do not find
the string “WIN” in the PHP_OS constant it is safe to assume that you are on a UNIX plat-
form. Once you know what platform you are on you can dynamically load the extension
that you want by using the dl() function.

Now that you have the extension properly loaded it is time to test to see if it is actually
there. The easiest way to do this is to use the phpinfo() function. Remember when you used
this in Chapter 2? You will need to run that same test script again and look for a section
in the page that looks like Figure 8.1.

Installing GD 159

Figure 8.1 Results of the phpinfo() function.

08 PHP_GP CH08 2/9/04 3:21 PM Page 159

Creating and Using a New Image
To create new images, GD offers you two functions. Both of these functions take two
arguments, width and height, and they both return a resource to the image.

■ ImageCreate(width, height)

■ ImageCreateTrueColor(width, height)

GD also offers functions to create images from existing files, but you will learn about these
later in this chapter. First take a look at the ImageCreate() function.

N o t e

A resource to an image is just the chunk of memory in which the image is being stored. In PHP you
work in memory to manipulate images instead of a GUI like Paint Shop Pro.

ImageCreate() creates a new blank image with width number of pixels across, and height
number of pixels tall. The color palette that ImageCreate() uses when creating an image is
an indexed-color palette, meaning that the number of colors in the palette will be 256.

Remember in Chapter 3 when image types and compressions were discussed? The
indexed-color palette uses a color lookup table to determine the specific color. These types
of images are really good for images that use flat colors or text and they are especially good
with simple shapes. You can save these images as .png files, and if GD ever supports the
.gif file format again you will be able to save them as .gif files.

C a u t i o n

If you save an 8-bit image (also referred to as an indexed-color palette image) as a .jpeg you will
end up with quite large file sizes and blotchy images.

Take a look at an example for creating a blank image:

<?php
if(!extension_loaded(‘gd’))
{

if(strtoupper(substr(PHP_OS, 3)) == “WIN”)
{

dl(‘php_gd2.dll’);
}
else
{

dl(‘gd.so’);

Chapter 8 ■ GD Graphics Overview160

08 PHP_GP CH08 2/9/04 3:21 PM Page 160

}
}
$imageResource = ImageCreate(100, 100);
?>

You now have an image in memory that is 100 pixels wide and 100 pixels tall. You can now
operate on this image using various functions provided by GD. Before you get into these
functions, though, take a very quick look at the ImageCreateTrueColor() function.

The ImageCreateTrueColor() function also takes a width and height and it also returns a
resource to an image in memory. However, it has one key difference: it creates an image
with a true-color palette instead of an indexed-color palette. This makes this function
ideal for creating complex graphics with lots of different elements in them. You would use
this function to create .jpeg images. You can also save the image as a .png, but it will be
saved as a true-color .png file instead of an indexed-color .png file.

Now that you know how to create an image resource, you will want to know how to edit
this resource.

How to Use Colors
Before you can actually start drawing geometric shapes all over the place, you need the
ability to select and use color. There are eight basic functions for color, as follows:

■ ImageColorAllocate(resource image, int red, int green, int blue)

■ ImageFill(resource image, int x, int y, int color)

■ ImageColorTransparent(resource image, int color)

■ ImageTrueColorToPalette(resource image, bool dither, int colors)

■ ImageColorsTotal(resource image)

■ ImageColorAt(resource image, int x, int y)

■ ImageColorsForIndex(resource image, int index)

■ ImageColorSet(resource image, int index, int red, int green, int blue)

Each of these functions takes an image resource as its first argument. Now take a more in-
depth look at each of these functions to see how you will be able to use them to manipu-
late the colors on your canvas.

Allocating Colors to an Image
ImageColorAllocate() takes four arguments: an image resource, a value for the amount of
red that should be in the color, a value for the amount of green that should be in the color,

How to Use Colors 161

08 PHP_GP CH08 2/9/04 3:21 PM Page 161

and a value for the amount of blue that should be in the color. If you have never used RGB
(red, green, blue) values before, each element of the color has a range of 0 to 255; 0 being
the lowest level and 255 being the highest level. Let’s say you wanted to allocate a color
that was completely black. You would write a line of code that looks like the following:

$black = ImageColorAllocate($someImageResource, 0, 0, 0);

What this essentially means is that you will be able to use the variable $black as a color in
the specified image resource. If you were working with two images simultaneously, then
you would not be able to use the variable $black in both images. You can use only the col-
ors that you allocate to a specific image. If this seems a little confusing, take a look at the
following code example and hopefully it will make things a little clearer:

<?php
// Create two images
$image1 = ImageCreate(100, 100);
$image2 = ImageCreate(100, 200);
// Allocate the colors to be used
$black = ImageColorAllocate($image1, 0, 0, 0);
// This is legal to do
ImageRectangle($image1, 6, 6, 66, 42, $black);
// This is illegal to do because black is not allocated to the image
ImageRectangle($image2, 6, 6, 66, 42, $black);
?>

Filling the Image
The ImageFill() function also takes four arguments: an image resource, a starting x point,
a starting y point, and the color to fill. ImageFill() does a flood fill of the entire image
starting at the specified coordinates. Since this function fills the entire image there is no
need to specify any other coordinate besides (0, 0). Take a look at the following example:

<?php
$image = ImageCreate(100, 100);
$red = ImageColorAllocate($image, 255, 0, 0);
ImageFill($image, 0, 0, $red);

// Show our Image
header(“Content-type: image/png”);
ImagePng($image);
ImageDestroy($image);
?>

Take a look at Figure 8.2 to see the results of using the ImageFill() function.

Chapter 8 ■ GD Graphics Overview162

08 PHP_GP CH08 2/9/04 3:21 PM Page 162

You could have specified any (x, y) coordinate and you would have received the same exact
results. Don’t worry too much about the display code right now; it will be covered later in
this chapter.

Setting Your Transparent Color
If you are using an image format that supports transparencies, such as .png, you can set
the color you want to show up as transparent by using the ImageColorTransparent() func-
tion (Figure 8.3). ImageColorTransparent() takes two arguments: the image resource, and
the color that you want to make transparent. To allocate a color to be transparent you still
use the ImageColorAllocate() function. To understand this better, take a look at the code
below. In the following example a red circle is drawn over a dark background and then the
color red is made transparent and the same image is drawn again.

<?php
$image = ImageCreate(128, 128);
$black = ImageColorAllocate($image, 0, 0, 0);
$red = ImageColorAllocate($image, 255, 0, 0);
// Make the background black
ImageFill($image, 0, 0, $black);
// Draw the circle
ImageFilledArc($image, 64, 64, 110, 110, 0, 360, $red, IMG_ARC_PIE);

// Show our Image Filled Image
ImagePng($image, “redcircle.png”);

// Make the red transparent
ImageColorTransparent($image, $red);

How to Use Colors 163

Figure 8.2 Results of using the ImageFill() function.

08 PHP_GP CH08 2/9/04 3:21 PM Page 163

// Show our Image Transparent Image
ImagePng($image, “transparentcircle.png”);

ImageDestroy($image);
?>
<HTML>
<HEAD>

<TITLE>Image Test</TITLE>
</HEAD>
<BODY>

</BODY>
</HTML>

C a u t i o n

You will need to change the permissions on the folder containing redcircle.png in order to use the
example. Simply add read/write permissions to the IUS_(MACHINENAME) user under the security
tab for the folder.

Chapter 8 ■ GD Graphics Overview164

Figure 8.3 Using transparent colors.

08 PHP_GP CH08 2/9/04 3:21 PM Page 164

How cool is that!? You are quickly becoming a graphic expert in PHP. Again, don’t worry
about the display code yet; I promise you will get to it later in this chapter.

Converting a True-Color Image to a Palette Image
Converting an image is not as complicated as it sounds. As a matter of fact, this is very easy
using the ImageTrueColorToPalette() function. ImageTrueColorToPalette() takes three argu-
ments, the first of which is the image resource. The second is a Boolean value—if it is set to
true, then dithering will be used; otherwise dithering will not be used. The third argument
is the number of colors that should appear in the color palette of the new image.

You could use this function to convert a .jpeg image into an indexed-color image, but the
decline in quality of the image would be very noticeable. The most logical reason to use
this function would be if you have a .png image that uses only, say, 16 colors, but it was
saved as a true-color image for some odd reason. Take a look at the following example:

<?php
// Get the image that needs to be converted
$image = ImageCreateFromPng(‘truecolorimage.png’);
// Now convert the image, since it is only using 16 colors you only need to specify 16
colors
ImageTrueColorToPalette($image, true, 16);
// save the image
ImagePng($image, ‘convertedimage.png’);
?>

See, you converted an existing image from a true-color image to an indexed-color image
and saved it as a new image all in three lines of code. I told you it wasn’t as complicated
as it sounded. Do some experimenting with this function on several different images to
see the effects. Convert a .jpeg photo using dithering, and then do the same thing without
using dithering to see the dramatic differences.

Counting Colors in an Image
To get the total number of colors in an image, you can use ImageColorsTotal().
ImageColorsTotal() takes one argument: the image resource for which you want to count
the number of colors.

<?php
// get an Image
$image = ImageCreateFromPng(‘somegraphic.png’);
// now count the colors in this Image

How to Use Colors 165

08 PHP_GP CH08 2/9/04 3:21 PM Page 165

$totalColors = ImageColorsTotal($image);
echo(“There are “ . $totalColors . “ colors in this image”);
?>

C a u t i o n

The ImageColorsTotal() function works only with indexed-color images.

Retrieving a Color at a Point
The ImageColorAt() function takes three arguments: the image resource, an x point, and a
y point. ImageColorAt() will return the index of the color at the specified (x, y) pixel. Once
you have this index you can use the ImageColorsForIndex() function to retrieve the red,
green, and blue components of the specific color.

<?php
$image = ImageCreateFromJpeg(‘someimage.jpg’);
$colorIndex = ImageColorAt($image, 100, 20);

$colorArray = ImageColorsForIndex($image, $colorIndex);
$red = $colorArray[‘red’];
$green = $colorArray[‘green’];
$blue = $colorArray[‘blue’];

echo(“Red: “ . $red . “
Green: “ . $green . “
Blue:” . $blue);
?>

C a u t i o n

The ImageColorAt() function works only with true-color images.

The ImageColorsForIndex() function takes two arguments: an image resource and a color
index. It then returns an array with the individual red, green, and blue components in
each index. Once you have these components you could use the ImageColorAllocate() func-
tion to allocate a color for an image, or you could use the ImageColorSet() function to
change a color in an image.

The ImageColorSet() function takes five arguments. The first is the image resource that you
want to operate on, the second is the index of the color you want to change, the third
argument is the red component, the fourth is the green component, and the fifth and final
argument is the blue component.

Chapter 8 ■ GD Graphics Overview166

08 PHP_GP CH08 2/9/04 3:21 PM Page 166

Drawing Basic Shapes on Your Empty Canvas
You now know how to create an image canvas that you can draw on, and you also know
how to allocate, manipulate, and count colors in an image. Now you’ll learn how to draw
geometric shapes on your empty canvas.

T i p

If you have ever worked with DirectX you can think of the image resource as a buffer that you draw
on. When you display the image you can think of that as blitting the buffer to the screen. The only
difference is that you don’t do this per frame.

To draw anything on your images you need a coordinate system. GD uses a Cartesian
coordinate system where the point (0, 0) is in the upper left-hand corner of the image.
Moving to the right along the x axis will move you in the positive x direction. Moving
down along the y axis will move you in the positive y direction. You will never use a neg-
ative x or y coordinate when working with images.

Each of the eight geometric functions available in GD takes one or more sets of coordi-
nates. You will be reviewing each of the eight functions in detail, so dust off all of those
old geometry lessons and get ready. Here are the eight geometric functions, in order from
easiest to hardest:

■ ImageSetPixel(resource image, int x, int y, int color)

■ ImageLine(resource image, int x1, int y1, int x2, int y2, int color)

■ ImageRectangle(resource image, int x1, int y1, int x2, int y2, int color)

■ ImageFilledRectangle(resource image, int x1, int y1, int x2, int y2, int color)

■ ImagePolygon(resource image, array points, int numberOfPoints, int color)

■ ImageFilledPolygon(resource image, array points, int numberOfPoints, int color)

■ ImageArc(resource image, int centerXPoint, int centerYPoint, int width, int
height, int startDegree, int endDegree, int color)

■ ImageFilledArc(resource image, int centerXPoint, int centerYPoint, int width, int
height, int startDegree, int endDegree, int color, int style)

Pixels and Lines
ImageSetPixel() takes four arguments: the first is the image resource, the second is the x
point, the third is the y point, and the fourth argument is the color. The ImageSetPixel()
function draws a single pixel at point (x, y) in the specified color. Take a look at the fol-
lowing example:

<?php
$image = ImageCreate(320, 200);

Drawing Basic Shapes on Your Empty Canvas 167

08 PHP_GP CH08 2/9/04 3:21 PM Page 167

$color = ImageColorAllocate($image, 254, 254, 254);
ImageFill($image, $color);

for($iLoop = 0; $iLoop < 1000; $iLoop++)
{

$color = ImageColorAllocate($image, rand() % 256, rand() % 256, rand() % 256);
ImageSetPixel($image, rand() % 320, rand() % 200, $color);
}

header(“Content-type: image/png”);
ImagePng($image);
ImageDestroy($image);
?>

This example generates a 320 × 200 image, setting 1000 random pixels in a random color
throughout the canvas. You use the random function to generate a random number and
then perform a modulus on that number to keep it between the specified limits of the can-
vas size. Take a look at Figure 8.4 to see the results of the code.

Now that you can draw pixels to the screen, let’s deal with a function that is a little more
practical. The ImageLine() function draws a line to the canvas. It takes six arguments. The
first is the resource to the image to which you are drawing the line. The second and third
arguments are the starting coordinates of the line. The fourth and fifth arguments are the
ending coordinates of the line. The final argument is the color that you want the line to
be drawn in.

<?php
$image = ImageCreate(320, 200);
$white = ImageColorAllocate($image, 255, 255, 255);
$black = ImageColorAllocate($image, 0, 0, 0);
ImageFill($image, $white);

ImageLine($image, 5, 5, 40, 100, $black);

header(“Content-type: image/png”);
ImagePng($image);
ImageDestroy($image);
?>

In this example, you first create an image that is 320 × 200 pixels wide. Then you allocate
two colors, white and black. You fill the canvas with the white color so your canvas is now
all white. Then you draw a line from point (5, 5) to point (40, 100) in black and output
the image to the browser.

Chapter 8 ■ GD Graphics Overview168

08 PHP_GP CH08 2/9/04 3:21 PM Page 168

From Lines to Rectangles
ImageRectangle() takes the same four parameters as the ImageLine() function, except instead
of the starting point of a line and an ending point for a line, it is the upper left-hand cor-
ner of the rectangle and the lower right-hand corner of the rectangle.

<?php
$image = ImageCreate(320, 200);

Drawing Basic Shapes on Your Empty Canvas 169

Figure 8.4 Generating 1000 random pixels.

Figure 8.5 Drawing a line.

08 PHP_GP CH08 2/9/04 3:21 PM Page 169

$white = ImageColorAllocate($image, 255, 255, 255);
$black = ImageColorAllocate($image, 0, 0, 0);
ImageFill($image, $white);

ImageRectangle($image, 5, 5, 100, 100, $black);

header(“Content-type: image/png”);
ImagePng($image);
ImageDestroy($image);

?>

The results of this example are shown in Figure 8.5.

But wouldn’t it be better to give the rectangle a starting (x, y) coordinate and a width and
a height that you would like the rectangle to be? You can create a function that does exactly
that.

<?php
function MyRectangle($image, $x1, $y1, $width, $height, $color)
{

// First you need to calculate the values for x2 and y2
$x2 = $x1 + $width;
$y2 = $y1 + $height;

// Now draw the rectangle
ImageRectangle($image, $x1, $y1, $x2, $y2, $color);

}

$image = ImageCreate(320, 200);
$white = ImageColorAllocate($image, 255, 255, 255);
$black = ImageColorAllocate($image, 0, 0, 0);
ImageFill($image, $white);

MyRectangle($image, 5, 5, 95, 95, $black);

header(“Content-type: image/png”);
ImagePng($image);
ImageDestroy($image);
?>

The results of this example look like Figure 8.6, but the function is much more intuitive.
I recommend that anytime you see a way to make a function simpler by creating your
own, then do it. Anytime that you can make code that makes more sense when you read
it, you should do it.

Chapter 8 ■ GD Graphics Overview170

08 PHP_GP CH08 2/9/04 3:21 PM Page 170

ImageFilledRectangle() functions exactly like ImageRectangle(), except it creates a filled rec-
tangle. ImageFilledRectangle() takes the same six parameters as ImageRectangle(). Take a
look at the following code example to see the MyFilledRectangle() function:

<?php
function MyFilledRectangle($image, $x1, $y1, $width, $height, $color)
{

// First you need to calculate the values for x2 and y2
$x2 = $x1 + $width;
$y2 = $y1 + $height;

// Now draw the rectangle
ImageFilledRectangle($image, $x1, $y1, $x2, $y2, $color);

}

$image = ImageCreate(320, 200);
$white = ImageColorAllocate($image, 255, 255, 255);
$black = ImageColorAllocate($image, 0, 0, 0);
ImageFill($image, 0, 0, $white);

MyFilledRectangle($image, 5, 5, 100, 100, $black);

header(“Content-type: image/png”);
ImagePng($image);
ImageDestroy($image);
?>

The results of the code above are shown in Figure 8.7.

Drawing Basic Shapes on Your Empty Canvas 171

Figure 8.6 The ImageRectangle()
function.

08 PHP_GP CH08 2/9/04 3:21 PM Page 171

From Rectangles to Polygons
As mentioned earlier, the concepts of each geometric shape will get progressively more
difficult. However, drawing a polygon isn’t that complicated. The major difference
between drawing a polygon and drawing a rectangle is the number of coordinates the
function will take. So far you have dealt only with functions that take one coordinate
(x, y). The ImagePolygon() function takes multiple coordinates. It also takes the number of
points that are in your polygon. When the ImagePolygon() function draws your polygon it
connects each point with a line.

ImagePolygon() takes four arguments. The first is, of course, the resource to the image. The
next argument is an array that contains all of your point coordinates for the polygon. The
third argument is an integer telling ImagePolygon() how many vertices are in your polygon.
The fourth and final argument is the color in which you want your polygon to be drawn.

Let’s say you wanted to draw a triangle on your canvas. You would need three sets of coor-
dinates. You can store these coordinates in an array, for example:

$points = array(50, 10,
20, 40,
80, 40);

This gives you each corner of the triangle. Now you need to calculate how many points
there are in the given polygon. With a triangle it is simple; there are obviously three points.
But what would you do for a more complex shape? Well, since there are two elements in
every point you can divide the size of the array by 2 to get the number of points in the
polygon.

$vertices = sizeof($points) / 2;

Chapter 8 ■ GD Graphics Overview172

Figure 8.7 The MyFilledRectangle() function.

08 PHP_GP CH08 2/9/04 3:21 PM Page 172

Remember in the last section that I said anytime you see a way to make the code a little
simpler, do it. Well, what if you created a function that took three arguments instead of
four to create a polygon? That would be great, wouldn’t it? You could save doing the num-
ber of vertices calculation every time you wanted to draw a polygon.

<?php
function MyPolygon($image, $points, $color)
{

// Calculate the number of vertices in the polygon
$vertices = sizeof($points) / 2;
// Draw the polygon to the canvas
ImagePolygon($image, $points, $vertices, $color);

}
?>

I know it doesn’t seem like much now, but what if you were constantly drawing polygons
and you had to redo that stupid division calculation every single time? Take a look at the
following example to see how to draw a polygon:

<?php
function MyPolygon($image, $points, $color)
{

// Calculate the number of vertices in the polygon
$vertices = sizeof($points) / 2;
// Draw the polygon to the canvas
ImagePolygon($image, $points, $vertices, $color);

}
$points = array(50, 10,

20, 40,
80, 40);

$image = ImageCreate(320, 200);
$white = ImageColorAllocate($image, 255, 255, 255);
$black = ImageColorAllocate($image, 0, 0, 0);
ImageFill($image, 0, 0, $white);

MyPolygon($image, $points, $black);

header(“Content-type: image/png”);
ImagePng($image);
ImageDestroy($image);
?>

The results of this example can be seen in Figure 8.8.

Drawing Basic Shapes on Your Empty Canvas 173

08 PHP_GP CH08 2/9/04 3:21 PM Page 173

The ImageFilledPolygon() function takes the same parameters as the ImagePolygon() func-
tion, but instead of drawing an outline of the polygon it draws a filled-in version of the
polygon. Here is a modified function for the ImageFilledPolygon() function:

<?php
function MyFilledPolygon($image, $points, $color)
{

// Calculate the number of vertices in the polygon
$vertices = sizeof($points) / 2;
// Draw the polygon to the canvas
ImageFilledPolygon($image, $points, $vertices, $color);

}
?>

From Polygons to Arcs and Ellipses
Wow, you are quickly becoming a master at creating on-the-fly images with GD. After you
learn how to create arcs and ellipses, you will move on to putting dynamic text in your
graphics, and finally you will take a more in-depth look at how to display and save your
on-the-fly images.

GD provides you with a function called ImageArc() to create, well, arcs. This function takes
a whopping eight arguments. The first is the resource to the image. The next two argu-
ments are the center x point for the arc and the center y point for the arc. The fourth and
fifth arguments are the desired width of the arc, and then the desired height of the arc.
The sixth argument is the starting degree for the arc. The seventh argument is the ending
degree for the arc. The eighth and final argument is the color that you would like the arc
to appear in.

Chapter 8 ■ GD Graphics Overview174

Figure 8.8 Drawing a polygon with the
ImagePolygon() function.

08 PHP_GP CH08 2/9/04 3:21 PM Page 174

N o t e

The ImageArc() function draws in a clockwise direction.

The ImageArc() function puts 0 degrees at three o’clock, 90 degrees at six o’clock, 180
degrees at nine o’clock, and 270 degrees at twelve o’clock. Although documentation on
www.php.net says that the ImageArc() function draws counter-clockwise, it actually draws
clockwise.

Take a look at how you would use the ImageArc() function and the results.

<?php
$image = ImageCreate(320, 200);
$white = ImageColorAllocate($image, 255, 255, 255);
$black = ImageColorAllocate($image, 0, 0, 0);
ImageFill($image, 0, 0, $white);

ImageArc($image, 50, 30, 90, 90, 0, 220, $black);

header(“Content-type: image/png”);
ImagePng($image);
ImageDestroy($image);
?>

The code example above draws an arc that is 90 pixels wide and 90 pixels high, with its
center point at (50, 30). It starts at the 0 degree mark and ends at the 220 degree mark.
Take a look at Figure 8.9 to see the results of the above code.

Drawing Basic Shapes on Your Empty Canvas 175

Figure 8.9 The ImageArc() function.

08 PHP_GP CH08 2/9/04 3:21 PM Page 175

The ImageFilledArc() function behaves in the same way as the ImageArc() function. It
also draws its arc starting from three o’clock and going in a clockwise direction. But the
ImageFilledArc() function takes an additional argument. The ninth argument, after color,
is the style in which the arc should be drawn. You can also use a bitwise OR to combine
styles. Take a look at what the styles are and how they affect the arc.

■ IMG_ARC_PIE. Draws a pie chart-styled arc with solid lines connecting the center
point to the edges of the arc.

■ IMG_ARC_CHORD. Draws a triangle that connects the beginning and end points
of the arc.

■ IMG_ARC_NOFILL. If this option is used, it behaves like the ImageArc() function.

■ IMG_ARC_EDGED. Connects the end points of the arc to its center.

Let’s use each of these individually in a code example and take a look at the results so you
know how each style affects the outcome of your arc.

<?php
$image1 = ImageCreate(320, 200);
$image2 = ImageCreate(320, 200);
$image3 = ImageCreate(320, 200);
$image4 = ImageCreate(320, 200);

$white1 = ImageColorAllocate($image1, 255, 255, 255);
$white2 = ImageColorAllocate($image2, 255, 255, 255);
$white3 = ImageColorAllocate($image3, 255, 255, 255);
$white4 = ImageColorAllocate($image4, 255, 255, 255);
$black1 = ImageColorAllocate($image1, 0, 0, 0);
$black2 = ImageColorAllocate($image2, 0, 0, 0);
$black3 = ImageColorAllocate($image3, 0, 0, 0);
$black4 = ImageColorAllocate($image4, 0, 0, 0);

ImageFill($image1, $white1);
ImageFilledArc($image1, 50, 30, 90, 90, 0, 220, $black1, IMG_ARC_PIE);
ImagePng($image1, “pie.png”);
ImageDestroy($image1);

ImageFill($image2, $white2);
ImageFilledArc($image2, 50, 30, 90, 90, 0, 220, $black1, IMG_ARC_CHORD);
ImagePng($image2, “chord.png”);
ImageDestroy($image2);

Chapter 8 ■ GD Graphics Overview176

08 PHP_GP CH08 2/9/04 3:21 PM Page 176

ImageFill($image3, $white3);
ImageFilledArc($image3, 50, 30, 90, 90, 0, 220, $black3, IMG_ARC_NOFILL);
ImagePng($image3, “nofill.png”);
ImageDestroy($image3);

ImageFill($image4, $white4);
ImageFilledArc($image4, 50, 30, 90, 90, 0, 220, $black4, IMG_ARC_EDGED);
ImagePng($image4, “edged.png”);
ImageDestroy($image4);
?>
<table border=”1” cellpadding=”2” cellspacing=”2”>

<tr>
<td align=”left” valign=”top”></td>
<td align=”left” valign=”top”></td>

</tr>
<tr>

<td align=”left” valign=”top”>IMG_ARC_PIE</td>
<td align=”left” valign=”top”>IMG_ARC_CHORD</td>

</tr>
<tr>

<td align=”left” valign=”top”></td>
<td align=”left” valign=”top”></td>

</tr>
<tr>

<td align=”left” valign=”top”>IMG_ARC_NOFILL</td>
<td align=”left” valign=”top”>IMG_ARC_EDGED</td>

</tr>
</table>

This produces the screen that you see in Figure 8.10.

The one obvious geometric shape missing from GD is a function to create an ellipse. Or
is it? You can use the ImageArc() and ImageFilledArc() functions to create an ellipse. All you
have to do is specify a starting degree of 0 and an ending degree of 360. This will create a
full ellipse. For example:

<?php
$image = ImageCreate(320, 200);
$white = ImageColorAllocate($image, 255, 255, 255);
$black = ImageColorAllocate($image, 0, 0, 0);
ImageFill($image, $white);

ImageArc($image, 50, 40, 70, 40, 0, 360, $black);

Drawing Basic Shapes on Your Empty Canvas 177

08 PHP_GP CH08 2/9/04 3:21 PM Page 177

header(“Content-type: image/png”);
ImagePng($image);
ImageDestroy($image);
?>

This generates an ellipse that looks like Figure 8.11.

Chapter 8 ■ GD Graphics Overview178

Figure 8.10 The ImageFilledArc() function.

Figure 8.11 Creating an ellipse.

08 PHP_GP CH08 2/9/04 3:21 PM Page 178

Creating Images with Text
You have seen how GD can handle drawing geometry on the canvas, but what if you have
some text that you want to dynamically put into your graphic? GD provides you with
three main functions for doing just that. They are:

■ ImageString(resource image, int fontNumber, int x, int y, string text, int color)

■ ImageTTFText(resource image, int size, int angle, int x, int y, int color, string
fontFile, string text)

■ ImageTTFBBox(int size, int angle, string fontFile, string text);

The ImageString() function is fairly straightforward. It takes six parameters. The first is the
resource to the image. The second is a font number, from 1 to 5, that uses a built-in font
to write out your text. The third and fourth arguments are the location that you want the
text to start at. The fifth argument is the text that you want displayed. The final argument
is the color in which you want the text to be displayed. This is the simplest of all three font
functions and gives you the least amount of flexibility.

<?php
$image = ImageCreate(320, 200);
$white = ImageColorAllocate($image, 255, 255, 255);
$black = ImageColorAllocate($image, 0, 0, 0);
ImageFill($image, $white);

ImageString($image, 1, 10, 10, “Text In Font 1”, $black);
ImageString($image, 2, 10, 30, “Text In Font 2”, $black);
ImageString($image, 3, 10, 50, “Text In Font 3”, $black);
ImageString($image, 4, 10, 70, “Text In Font 4”, $black);
ImageString($image, 5, 10, 90, “Text In Font 5”, $black);

header(“Content-type: image/png”);
ImagePng($image);
ImageDestroy($image);
?>

The code example above goes through each font size that can be rendered by the
ImageString() function. Figure 8.12 shows the results of the code. As you can see, it isn’t a
very pretty font.

Creating Images with Text 179

08 PHP_GP CH08 2/9/04 3:21 PM Page 179

A more useful function for rendering fonts to your canvas is ImageTTFText(). The
ImageTTFText() function takes eight arguments. The first is the resource to the image; the
second argument is the size in which you want to render the text. The third argument is
the angle at which you want to render
the text. This will allow you to render
text sideways, diagonally, and even
upside down—it really is a fun argu-
ment to play with. The fourth and fifth
arguments are the (x, y) coordinate that
you want the text to start at. The sixth
argument is the color you want to ren-
der the font in. The seventh argument is
the True Type Font you want to use, and
the final argument is the text you want
to render.

The ImageTTFText() function returns an
array with eight elements that represent
the four points that make the bounding
box of the text. Take a look at Table 8.1
to see what index points to which point.

T i p

By default, ImageTTFText() renders anti-aliased text. If you would like the font to be rendered as
aliased text you need to put a “-” (minus) sign in front of the color.

Chapter 8 ■ GD Graphics Overview180

Figure 8.12 Adding text with the
ImageString() function.

Table 8.1 Bounding Box Coordinates

Index in
the Array Description

0 Lower left x position.

1 Lower left y position.

2 Lower right x position.

3 Lower right y position.

4 Upper right x position.

5 Upper right y position.

6 Upper left x position.

7 Upper left y position.

* You start in the lower left corner and work your way
counter-clockwise around the box.

08 PHP_GP CH08 2/9/04 3:21 PM Page 180

Now try rendering some text in a cool True Type Font. I am using Matisse ITC for this
example.

<?php
$image = ImageCreate(500, 200);
$white = ImageColorAllocate($image, 255, 255, 255);
$black = ImageColorAllocate($image, 0, 0, 0);
ImageFill($image, 0, 0, $white);

ImageTTFText($image, 36, 0, 0, 80, $black, “matisse_.ttf”, “Cool Anti-Aliased Text!!!”);
ImageTTFText($image, 36, 0, 0, 150, -$black, “matisse_.ttf”, “Cool Aliased Text!!!”);

header(“Content-type: image/png”);
ImagePng($image);
ImageDestroy($image);
?>

C a u t i o n

To run properly, the font file must be located in the same directory as your PHP file.

In this example, I rendered both anti-aliased text and aliased text to show you the differ-
ence. The results are shown in Figure 8.13. As you can see, the aliased text is very jagged
around the edges and not very pretty. I imagine there will be very few cases where you’ll
use the aliased font.

Creating Images with Text 181

Figure 8.13 Rendering text with the ImageTTFText()
function.

08 PHP_GP CH08 2/9/04 3:21 PM Page 181

C a u t i o n

There is a bug in the GD library in PHP 4.2. The bug will cause ImageTTFText() to throw an error.
This shouldn’t be a problem since PHP 5 has been released. If you are still using PHP 4.2, upgrade!

I know you are saying, “Cool, but what if I want to do some font effects, like embossing?”
You can do that with ImageTTFText() too. It just requires some careful placement of colors
and text. Take the same example you just did but add a few more lines of code to it.

<?php
$image = ImageCreate(500, 200);
$white = ImageColorAllocate($image, 255, 255, 255);
$black = ImageColorAllocate($image, 0, 0, 0);
$gray = ImageColorAllocate($image, 155, 155, 155);
ImageFill($image, $white);

ImageTTFText($image, 36, 0, 2, 81, $black, “matisse_.ttf”, “Cool Embossed Text!!!”);
ImageTTFText($image, 36, 0, 0, 79, $white, “matisse_.ttf”, “Cool Embossed Text!!!”);
ImageTTFText($image, 36, 0, 0, 80, $gray, “matisse_.ttf”, “Cool Embossed Text!!!”);

header(“Content-type: image/png”);
ImagePng($image);
ImageDestroy($image);
?>

The first step in creating the effect that you see in Figure 8.14 is to render the black bor-
der around the text. To do this you just add 1 to the (x, y) coordinate. Next you want to
render the text again with white to create a separation between the gray and the black. To
do this you subtract 1 from the (x, y) coordinate. The final step is to render the text in gray
at the specified (x, y) coordinate.

The final text function to learn is the ImageTTFBBox() function. This function takes four
arguments. The first is the size of the font, then the angle, followed by the True Type Font
file, and, lastly, the text you want to render. ImageTTFBBox() returns an array with the
bounding box of the text. This is an extremely useful function when you need to make
sure that the text you are going to render is within the image, unless you don’t mind cut-
ting your text off in mid-sentence.

The returned array is ordered exactly the same as the ImageTTFText() function’s array. It
starts at the lower left-hand corner of the box and works its way around in a counter-
clockwise fashion.

Chapter 8 ■ GD Graphics Overview182

08 PHP_GP CH08 2/9/04 3:21 PM Page 182

Now create a function to put in our common.php file that will calculate the width and
height of the bounding box for the text. Your function will also need to take four argu-
ments, but you will want to return two integers. So your function will actually need to take
six arguments.

<?php
function MyTTFBox($size, $angle, $fontfile, $text, &$width, &$height)
{

// Get the bounding box
$arrBox = ImageTTFBBox($size, $angle, $fontfile, $text);

// Now calculate the width and the height of the box
$width = abs($arrBox[6] - $arrBox[2]);
$height = abs($arrBox[7] - $arrBox[3]);

}

$myWidth = 0;
$myHeight = 0;

MyTTFBox(36, 0, “matisse_.ttf”, “Cool Embossed Text!!!”, $myWidth, $myHeight);

echo(“The Bounding box is $myWidth pixels by $myHeight pixels.”);
?>

Creating Images with Text 183

Figure 8.14 Creating cool text effects with the
ImageTTFText() function.

08 PHP_GP CH08 2/9/04 3:21 PM Page 183

The MyTTFBox() function takes the same four arguments as the ImageTTFBBox() function plus
two more arguments—the width and the height. The width and the height are passed by
reference, meaning that anything that changes these variables in the function will also
affect the results of the variables that were passed in. Take a look at Figure 8.15 to see the
results of your new function.

Saving Your Images
Throughout the examples you have seen the use of ImagePng() and ImageJpeg(). These two
functions are used to save images to a file and render images to the browser. There is a
third function called ImageWbmp() that renders and saves WBMP files. All three of these
functions take two arguments. The first is required: the resource to the image. The second
argument is optional; you can specify a filename that you would like to save the image
data to. Just make sure that if you save a file you use the proper extension. Don’t try to save
a .png file while using the ImageJpeg() function and vice versa.

// This saves a PNG file
ImagePng($image, “myimage.png”);
// This saves a JPEG file
ImageJpeg($image, “myimage.jpg”);
// This saves a WBMP file
ImageWbmp($image, “myimage.wbmp”);

Chapter 8 ■ GD Graphics Overview184

Figure 8.15 The MyTTFBox() function.

08 PHP_GP CH08 2/9/04 3:21 PM Page 184

If you want to render the image directly to the browser you must specify a content type.
You can do this by using the built in PHP header() function. To render a .png you have to
specify a content type of image/png. To render a .jpeg you have to specify a content type
of image/jpg. To render a WBMP you have to specify a content type of image/wbmp.

// This renders a PNG to the browser
header(“Content-type: image/png”);
ImagePng($image);
// This renders a JPEG to the browser
header(“Content-type: image/jpg”);
ImageJpeg($image);
// This renders a WBMP to the browser
header(“Content-type: image/wbmp”);
ImageWbmp($image);

Using Existing Images
Throughout this chapter you have seen how to create images, use colors, draw geometri-
cal shapes to the canvas, and render text to your images. Now you will learn how to use
existing images to create new images. There are six basic functions that you will use. The
first two are the basis of using existing images to make new images.

■ ImageCreateFromJpeg(string filename)

■ ImageCreateFromPng(string filename)

Each of these functions returns a resource to an image. You cannot create an image from
a WBMP, only from .pngs and .jpegs.

// Get a resource to an existing image
$image = ImageCreateFromPng(“someimage.png”);

After you have opened a file and retrieved a resource you can copy, resize, resample, or
merge the image with another image with the following functions:

■ ImageCopy(resource destinationImage, resource sourceImage, int desinationX,
int destinationY, int sourceX, int sourceY, int sourceWidth, int sourceHeight)

■ ImageCopyResized(resource destinationImage, resource sourceImage, int desinationX,
int destinationY, int sourceX, int sourceY, int destinationWidth, int
destinationHeight, int sourceWidth, int sourceHeight)

■ ImageCopyResampled(resource destinationImage, resource sourceImage, int
desinationX, int destinationY, int sourceX, int sourceY, int destinationWidth,
int destinationHeight, int sourceWidth, int sourceHeight)

Using Existing Images 185

08 PHP_GP CH08 2/9/04 3:21 PM Page 185

■ ImageCopyMerge(resource destinationImage, resource sourceImage, int destinationX,
int destinationY, int sourceX, int sourceY, int sourceWidth, int sourceHeight,
int percent)

I have included two images on the CD called dragon.jpg and frame.jpg. You will use
these images to create a new image using the ImageCopy() function. The images appear in
Figure 8.16.

Now you will copy dragon.jpg onto frame.jpg using the ImageCopy() function.

<?php
// Get our image resources
$dragon = ImageCreateFromJpeg(“dragon.jpg”);
$frame = ImageCreateFromJpeg(“frame.jpg”);

// Copy dragon onto frame
ImageCopy($frame, $dragon, 21, 31, 0, 0, 477, 462);

// Save the image and show it
ImageJpeg($frame, “frameDragon.jpg”);

echo(“”);
?>

Chapter 8 ■ GD Graphics Overview186

Figure 8.16 Images for use in the ImageCopy() function.

08 PHP_GP CH08 2/9/04 3:21 PM Page 186

I’ll break down each element of the ImageCopy() function in this example. The first argu-
ment is the destination image, which in this case is $frame. The second argument is the
source image, which is $dragon. The next argument is what pixel you want to put the
source image in in the destination image. Since the frame ends at the coordinate (21, 31),
that is where you want to put the source image. The next argument is what pixel you want
to grab the image at. Since the dragon image fits perfectly inside the frame, you just grab
it starting at the coordinate (0, 0). The final arguments are the width and height of the
source image. Since the dragon does fit perfectly within the frame, you can specify the
actual width and height of the image. But what if the dragon was the same size as the
frame?

If both the images were the same size, you would have to do a little math to get the same
results as Figure 8.17. You would want to first grab the source image from the same point
you were placing the image. In the example above, it would be (0, 0). Then you would
want to subtract that amount from the overall width and height of the image. In the
example above, it would be (456, 431). So the new ImageCopy() line would look like this:

ImageCopy($frame, $dragon, 21, 31, 0, 0, 456, 431);

Using Existing Images 187

Figure 8.17 Copying an image with the ImageCopy()
function.

08 PHP_GP CH08 2/9/04 3:21 PM Page 187

So now you know how to copy an image that is either the same size or smaller than the
destination image. But what if you want to copy an image that is larger than the destina-
tion image? You would use the ImageCopyResized() or the ImageCopyResampled() functions. A
good example would be to take the framedDragon.jpg image that you just created and cre-
ate a 100 × 100 thumbnail of the image.

<?php
// Get our image resources
$image = ImageCreateFromJpeg(“frameDragon.jpg”);

// Create a true color image 100x100
$thumb = ImageCreateTrueColor(100, 100);

// Copy dragon onto frame
ImageCopyResized($thumb, $image, 0, 0, 0, 0, 100, 100, ImagesX($image),
ImagesY($image));

// Save the image and show it
ImageJpeg($thumb, “thumbFrameDragon.jpg”);

echo(“”);
?>

This starts off the same way as the last example, by getting the resource to an existing image.
Then you create a new true-color image that is 100 × 100 pixels. Now you copy the image
$image to the destination image $thumb. The seventh and eighth arguments are the desti-
nation image’s width and height. The ninth and tenth arguments are the source image’s
width and height. In this example you use the ImagesX() and ImagesY() functions that return
the width and height of the image resource. A full listing of all image functions can be found
in Appendix D. Take a look at Figure 8.18 to see the results of the example above.

Chapter 8 ■ GD Graphics Overview188

Figure 8.18 Using the
ImageCopyResized() function.

08 PHP_GP CH08 2/9/04 3:21 PM Page 188

I mentioned earlier in this chapter that the ImageCopyResized() function and the
ImageCopyResampled() function do the same thing. Well, technically they do the same thing,
but with one minor difference. After the ImageCopyResampled() function copies and resizes
the image, it also resamples it. The results are a crisper, cleaner image. In the upcoming code
example you will resize the image using ImageCopyResized() and then ImageCopyResampled().
After they are resized you will save them and compare the results.

<?php
// Get our image resources
$image = ImageCreateFromJpeg(“frameDragon.jpg”);

// Create a true color image 100x100
$thumb = ImageCreateTrueColor(250, 250);
$thumb2 = ImageCreateTrueColor(250, 250);

// Copy dragon onto frame
ImageCopyResized($thumb, $image, 0, 0, 0, 0, 250, 250, ImagesX($image),
ImagesY($image));
ImageCopyResampled($thumb2, $image, 0, 0, 0, 0, 250, 250, ImagesX($image),
ImagesY($image));

// Save the image and show it
ImageJpeg($thumb, “thumbFrameDragon1.jpg”);
ImageJpeg($thumb2, “thumbFrameDragon2.jpg”);

echo(“ ”);
?>

The results of the code example are shown in Figure 8.19.

The difference is noticeable. The top image is the one made with ImageCopyResized(). It has
quite a bit of artifacting and looks quite grainy compared to the bottom image, which was
created with ImageCopyResampled().

So why would you ever use ImageCopyResized()? Well, the only reason I can think of is
speed. But since you aren’t batching a ton of images at once, you might as well use the
ImageCopyResampled() function whenever speed isn’t a concern. After all, you do want to get
the best results you possibly can.

The final function to look at is the ImageCopyMerge() function. This function behaves
exactly like the ImageCopy() function with one very key difference. The extra parameter (int
percent) tells the image how opaque the image should be on the destination image. This
allows you to create some cool backgrounds or translucent images.

Using Existing Images 189

08 PHP_GP CH08 2/9/04 3:21 PM Page 189

Let’s merge our dragon image onto a white image with 20% opacity. This will allow most
of the white to show through while displaying a faint image of the dragon.

<?php
// Get our image resources
$dragon = ImageCreateFromJpeg(“dragon.jpg”);

// Create a true color white image
$whiteImage = ImageCreateTrueColor(512, 512);
$white = ImageColorAllocate($whiteImage, 255, 255, 255);
$black = ImageColorAllocate($whiteImage, 0, 0, 0);
$gray = ImageColorAllocate($whiteImage, 155, 155, 155);
ImageFill($whiteImage, 0, 0, $white);

Chapter 8 ■ GD Graphics Overview190

Figure 8.19 Results of the
ImageCopyResized() [top] and
ImageCopyResampled() [bottom]
functions.

08 PHP_GP CH08 2/9/04 3:21 PM Page 190

// Copy dragon onto frame
ImageCopyMerge($whiteImage, $dragon, 0, 0, 0, 0, ImagesX($dragon), ImagesY($dragon),
20);

ImageTTFText($whiteImage, 36, 45, 201, 257, $black, “matisse_.ttf”, “Dragon!!!”);
ImageTTFText($whiteImage, 36, 45, 199, 254, $white, “matisse_.ttf”, “Dragon!!!”);
ImageTTFText($whiteImage, 36, 45, 200, 256, $gray, “matisse_.ttf”, “Dragon!!!”);

// Show the new image
header(“Content-type: image/jpeg”);
ImageJpeg($whiteImage);
ImageDestroy($whiteImage);
?>

The results of all of your hard work are shown in Figure 8.20.

Using Existing Images 191

Figure 8.20 The results of your hard work!

08 PHP_GP CH08 2/9/04 3:21 PM Page 191

Conclusion
That’s it! You are now officially a dynamic image master in PHP. You learned how to cre-
ate indexed and true-color images. You also learned how to allocate colors to an image.
You became a god at drawing dynamic shapes onto your empty canvases. You also learned
how to generate text from a True Type Font and use it in your image. Finally, you learned
how to use existing images to your advantage to create some really cool-looking graphics.

Next up: creating a game called Battle Tank and creating dynamic terrain for your new
tank game!

Chapter 8 ■ GD Graphics Overview192

08 PHP_GP CH08 2/9/04 3:21 PM Page 192

