
CHAPTER 7

Getting
Specific with

Games in
Lua

07-gpPY07.qxd 11/10/03 12:36 AM Page 251

The plainest sign of wisdom is a continual cheerfulness: her state is like that of things in the regions
above the moon, always clear and serene.

—Michel de Montaigne

In this chapter, you’ll push the boundaries of Lua and examine game programming
itself—with some help from LuaSDL. I’ll also launch into the Lua C API in this chapter.

LuaSDL
LuaSDL is Simple DirectMedia Layer’s binding into the Lua universe. LuaSDL has its own
project page on Sourceforge, at http://sourceforge.net/projects/luasdl/. Lua users also
keep a copy of the distribution on their Wiki pages, at http://lua users.org/wiki/
LuaModuleLuaSdl.

You can also find a copy of LuaSDL in the Chapter 7 section of this book’s CD. The
LuaSDL binaries are taken from Lua users.org and precompiled and generated by Thatcher
Ulrich, a programmer for Oddworld Inhabitants. Thatcher’s latest LuaSDL versions can be
found at his Website, at http://tulrich.com.

In Windows, you need to place the prebuilt luaSDL.dll
somewhere in your path in order for SDL to function.
The easiest way to do this is to drop the luaSDL.dll
into your Windows system folder. Linux-platform users
also need to set the path or place libluaSDL.so into
their library-loading path file (which varies; usually
usr/lib or usr/local/lib). Only the pre-built binaries
are available at the time of this writing, and they are
only available on these platforms.

Gravity: A Lua SDL Game
I first introduced SDL way back in Chapter 4, where you used it with Python to do some
pretty amazing stuff. Lua’s SDL bindings aren’t quite as complete, and unfortunately they
are also a little out-of-date. The bindings are still in beta (Version 0.3 as of this writing) and
were put together using the Lua 4 interpreter (the binary module has been pre-packaged
with the toLua tool). Because of this, all of the necessary Lua scripts are bundled with the
game inside the folder (so you don’t try running it with Lua 5).

252 7. Getting Specific with Games in Lua

TIP
If you really want to get up-
to-speed with SDL, check
out the highly rated Focus
on SDL, by Ernest Pazera,
published by Premier Press.

07-gpPY07.qxd 11/10/03 12:36 AM Page 252

LuaSDL comes bundled with a 2D sprite game prototype called Meteor Shower. The game is
written entirely in Lua and SDL by Thatcher Ulrich, who has generously given the source
code to the public domain. I use this code as a base for Gravity. The entire source sample
can be found in the Gravity folder in the Chapter 7 section on the CD, along with the pre-
compiled DLLs necessary to use SDL and the Lua 4 interpreter.

You can launch Gravity from the command line; just navigate to the directory using the
command line and type:

Lua Gravity.lua

In Gravity, the player is the moon in a universe gone haywire. Planetary objects and space
travelers zoom across the screen, each attracted to themselves and to the player by their
given mass (see Figure 7.1). The player must avoid these objects or face destruction.

A number of functions keep Gravity going. The list of functions for Gravity is shown in
Figure 7.2.

Importing SDL
Before other code can start working, the program must have access to LuaSDL. This can be
achieved with only a few short lines:

-- Need to load the SDL module
if loadmodule then

loadmodule("SDL")
end

253Gravity: A Lua SDL Game

Figure 7.1

Gravity goes haywire in
this LuaSDL game

07-gpPY07.qxd 11/10/03 12:36 AM Page 253

254 7. Getting Specific with Games in Lua

Figure 7.2

The function list for
Gravity

Lua 5 versus Lua 4

Lua 5.0 was released early in April of 2003.A number of new features
came with Lua 5.0, including the following:

■ Coroutines for executing many independent threads.
■ Block comments for having multiple comment lines in code.
■ Boolean types for true and false.
■ Changes to how the API loads chunks.This is supported by new

commands: lua_load, luaL_loadfile, and luaL_loadbuffer.
■ Lightweight userdata that holds a value and not an object.
■ Weak tables that assist with garbage collection.
■ A faster virtual machine that is register-based.
■ Standard libraries that use namespaces, although basic functions

are still global.
■ New methods of garbage collection, such as metamethods and

other new features that make collection safe.

Along with the added features came a number of incompatibilities with
previous Lua versions.Watch out for the following differences if you
are a Lua 4.0 guru moving to Lua 5.0:

Continued

07-gpPY07.qxd 11/10/03 12:36 AM Page 254

Setting Initial Variables
You must initialize a blit surface and a start gamestate early on for this 2D game.

Blitting, as you may recall from Chapter 4, is basically rendering or drawing, and in particu-
lar is the act of redrawing an object by copying the pixels of an object onto the screen.

An SDL blit surface looks like this:

SDL.SDL_BlitSurface = SDL.SDL_UpperBlit;

The gamestate is a collection of state variables, assigned to a Lua table, that are initialized
before the game starts to run. These are listed in Table 7.1.

gamestate = {
last_update_ticks = 0,
begin_time = 0,
elapsed_ticks = 0,
frames = 0,
update_period = 30, -- interval between calls to update_tick
active = 1,
new_actors = {},
actors = {},
add_actor = function(self, a)

assert(a)
tinsert(self.new_actors, a)

end
}

In this table there are a number of variables set to 0 and also a few nested tables. The
update_period is the interval in milliseconds between calls to the update tick, and active is a
Boolean that says whether the engine is currently active or not. The add_actor function is
also defined in this table.

255Gravity: A Lua SDL Game

■ Metatables have replaced the tag-method scheme.
■ There are a number of changes to function calls.
■ There are new reserved words (including false and true).
■ Most library functions are now defined inside Lua tables.
■ lua_pushuserdata is deprecated and has been replaced with

lau_newuserdata and lua_pushlightuserdata.

Work on 5.1 has already begun, and the rumor mill has it that this
next version may be available by the end of 2003.

07-gpPY07.qxd 11/10/03 12:36 AM Page 255

The next Lua table is for a sprite cache. This cache will hold sprites that have already been
loaded, so the engine won’t have to try and load them on-the-fly:

sprite_cache = {}

Gravity is all about speed and velocity and, well, gravity. I envisioned flying planetary
objects, each with different masses, bumping and colliding with each other in a solar
system-like playing screen. To achieve this effect, I have to set gravity, how often obstacles fly
onto the screen, and how many lives the player will have.

-- Set gravity
GRAVITY_CONSTANT = 100000
-- table of virtual masses for the different obstacle sizes
obstacle_masses = { 10, 50, 75 }
OBSTACLE_RESTITUTION = .05
-- soft speed-limit on obstacles
SPEED_TURNOVER_THRESHOLD = 4000
-- player manager actor
MOONS_PER_GAME = 3
--How often till new obstacle appears
BASE_RELEASE_PERIOD = 500

The three obstacles, two planets and a space cow, are illustrated in Figure 7.3. Each will use
a unique bitmap image that is already included in the Gravity folder. These images are
placed into a Lua table.

256 7. Getting Specific with Games in Lua

TABLE 7.1 The gamestateVariables

Element Value

last_update_ticks 0

begin_time 0

elapsed_ticks 0

frames 0

update_period 30

active 1

new_actors Nested table

actors Nested table

add_actor Function

07-gpPY07.qxd 11/10/03 12:36 AM Page 256

--load the bitmap obstacle images
obstacle_images = {

{ "obstacle1.bmp" },
{ "obstacle2.bmp" },
{ "obstacle3.bmp" },

}

Creating Functions
Creating functions is really the meat and gravy of the endeavor. You need functions, lots of
functions. Sprites, vectors, events, the game engine, and each actor (or object) within the
game must be handled.

Sprite Handling
Sprite handling is the first thing to tackle (see Figure 7.4). The main sprite function will be
a constructor that takes in a bitmap file and returns an SDL surface that can be blitted and
used by the engine. A function that draws the new blitted SDL surface sprite onto a rect
(rects are again from Chapter 4—they are the basic object for a 2D SDL game) will be part
of the process as well. The main sprite function will be sprite():

function sprite(file)
-- The sprite constructor. Passes in a bitmap filename and returns an SDL_Surface

--First check the cache
if sprite_cache[file] then

return sprite_cache[file]
end

257Gravity: A Lua SDL Game

Figure 7.3

The three obstacles in
Gravity

07-gpPY07.qxd 11/10/03 12:36 AM Page 257

local temp, my_sprite;
-- Load the sprite image
my_sprite = SDL.SDL_LoadBMP(file);
if my_sprite == nil then

print("Couldn't load " .. file .. ": " .. SDL.SDL_GetError());
return nil

end
-- Set colorkey to black (for transparency)
SDL.SDL_SetColorKey(my_sprite, SDL.bit_or(SDL.SDL_SRCCOLORKEY, SDL.SDL_RLEACCEL), 0)
-- Convert sprite to video SDL format
temp = SDL.SDL_DisplayFormat(my_sprite);
SDL.SDL_FreeSurface(my_sprite);

my_sprite = temp;
sprite_cache[file] = my_sprite
return my_sprite

end

258 7. Getting Specific with Games in Lua

Figure 7.4

Sprite handling
functions in Gravity

07-gpPY07.qxd 11/10/03 12:36 AM Page 258

The sprite constructor first checks to make sure that the sprite doesn’t already exist in
sprite_cache. If it does not, the constructor tries to find the given BMP image file. If the file
doesn’t exist, the constructor exits with an error; otherwise it goes ahead and loads the
image into an SDL format (using a temp variable as interim), sets the colorkey (another
Chapter 4 concept), loads the sprite into the sprite_cache, and returns the sprite.

The second sprite function, show_sprite, is passed a sprite and draws it on the screen at the
given coordinates (x,y). It uses the massively powerful rect() to accomplish this. Notice that
in order for show_sprite to work, it needs all four variables:

function show_sprite(screen, sprite, x, y)
-- make sure we have a temporary rect structure
if not temp_rect then

temp_rect = SDL.SDL_Rect_new()
end
temp_rect.x = x - sprite.w / 2
temp_rect.y = y - sprite.h / 2
temp_rect.w = sprite.w
temp_rect.h = sprite.h
SDL.SDL_BlitSurface(sprite, NULL, screen, temp_rect)

end

Vector Handling
When used in game physics, vectors combine magnitude (speed) and direction (see Figure
7.5). Vectors are extremely useful, as the engine needs to know the speed and direction of
the objects and actors flying around the screen. In order to do this, the vec2 function needs
to take in a table and do some math.

259Gravity: A Lua SDL Game

Figure 7.5

Vectors in physics
combine magnitude
and direction.

07-gpPY07.qxd 11/10/03 12:36 AM Page 259

In geometry, vectors consist of a point or a location in space, a direction, and distance. The
combination of direction and distance is sometimes called displacement. The vec2 function
helps to keep track of vectors using x and y coordinates, as shown in Figure 7.6. The start-
ing coordinates are a.x and a.y, and the ending coordinates are b.x and b.y.

The vec2 function has a number of methods for determining speed and direction of an
actor or object using vectors. The add, sub, mul, and unm methods are used to track position
in two-dimensional space by performing sector arithmetic.

The add method is used to do vector addition where the results of two vectors can be plot-
ted in two-dimensional space, as shown in Figure 7.7. Vector subtraction is handled by the
sub method, and does the opposite of vector addition by delivering the difference between
two vectors.

You can multiply a vector by a constant to produce a second vector that travels in the
same or the opposite direction but at a different speed. Multiplying vectors in math is
called scalar multiplication. Scalar multipication can be really useful for collisions—say if
two planets in the Gravity game collide, and they need to bounce off of each other in
opposite directions.

There is also a second way of multiplying vectors that gives the angle between two vectors.
This called the dot product; it is also handled by the mul method. Although you don’t use the
dot product in this game, it is a useful vector function and is sometimes used to perform
lighting calculations (say, if you wanted to add a sun object that casts shadows to the game)
or determine facing in 3D games.

After running through vec2, vec2_normalize finishes the vector math by dividing by the
length and catching any possible close to 0 calculations that could cause errors.

260 7. Getting Specific with Games in Lua

Figure 7.6

Starting and ending
points of a vector

07-gpPY07.qxd 11/10/03 12:36 AM Page 260

--vec2_tag = nil
-- re-initialize the vector type when reloading
function vec2(t)
-- constructor

if not vec2_tag then
vec2_tag = newtag()
Vector addition
settagmethod(vec2_tag, "add",

function (a, b) return vec2{ a.x + b.x, a.y + b.y } end
)
Vector subtraction
settagmethod(vec2_tag, "sub",

function (a, b) return vec2{ a.x - b.x, a.y - b.y } end
)
Vector multiplication
settagmethod(vec2_tag, "mul",

function (a, b)
if tonumber(a) then

return vec2{ a * b.x, a * b.y }

261Gravity: A Lua SDL Game

Figure 7.7

Vector addition

07-gpPY07.qxd 11/10/03 12:36 AM Page 261

elseif tonumber(b) then
return vec2{ a.x * b, a.y * b }

else
-- dot product.
return (a.x * b.x) + (a.y * b.y)

end
end

)
settagmethod(vec2_tag, "unm",

function (a) return vec2{ -a.x, -a.y } end
)

end

local v = {}
if type(t) == 'table' or tag(t) == vec2_tag then

v.x = tonumber(t[1]) or tonumber(t.x) or 0
v.y = tonumber(t[2]) or tonumber(t.y) or 0

else
v.x = 0
v.y = 0

end
settag(v, vec2_tag)
v.normalize = vec2_normalize
return v

end

function vec2_normalize(a)
-- If a has 0 or near-zero length, sets a to an arbitrary unit vector

local d2 = a * a
if d2 < 0.000001 then

-- Return arbitrary unit vector
a.x = 1
a.y = 0

else
-- divide by the length to get a unit vector
local length = sqrt(d2)
a.x = a.x / length
a.y = a.y / length

end
end

Event Handling
Handlers for key presses and mouse clicks are necessary for any computer game. Mouse
events will be picked up by the individual actor that controls the player, but monitoring for
the keyboard and windows events must also occur in case a player wants to close a window

262 7. Getting Specific with Games in Lua

07-gpPY07.qxd 11/10/03 12:36 AM Page 262

or quit using the Escape key. This can be done fairly easily (see Figure 7.8) by using
SDL_KEYDOWN to watch for SDLK_q or SDLK_ESCAPE.

function handle_event(event)
-- called by main loop
--Checks for keypresses
-- sets gamestate to nil if player wants to quit

if event.type == SDL.SDL_KEYDOWN then
local sym = event.key.keysym.sym
if sym == SDL.SDLK_q or sym == SDL.SDLK_ESCAPE then

gamestate.active = nil
end

elseif event.type == SDL.SDL_QUIT then
gamestate.active = nil

end
end

The Engine and the Game Loop
A number of actions must happen in the engine and game loop, and these actions should
correspond to a codeable function. You must have a function to remove any sprites that
aren’t being used and add any new ones, a function to render the screen and background,
a function that keeps track of time and updates the game state, a function that does the
blitting, and a function that listens for player keystrokes:

■ render_frame. Updates and redraws.
■ engine_init. Sets screen and video.
■ engine_loop. Main engine loop.
■ gameloop_iteration. Tracks time and call other functions.

263Gravity: A Lua SDL Game

Figure 7.8

Event handling

07-gpPY07.qxd 11/10/03 12:36 AM Page 263

■ update_tick. Updates any game actors.
■ handle_event. Listens for any events caused by the player.
■ handle_collision. Handles any actor collisions.

The first step is to initialize the engine.

The engine_init function is used to set the screen width and height and the video mode
and to start the game ticking, so to speak. It does all this through common-sense local vari-
ables, a few SDL calls, and calling gamestate:

function engine_init(argv)
local width, height;
local video_bpp;
local videoflags;
videoflags = SDL.bit_or(SDL.SDL_HWSURFACE, SDL.SDL_ANYFORMAT)
width = 800
height = 600
video_bpp = 16
-- Set video mode
gamestate.screen = SDL.SDL_SetVideoMode(width, height, video_bpp, videoflags);
gamestate.background = SDL.SDL_MapRGB(gamestate.screen.format, 0, 0, 0);
SDL.SDL_ShowCursor(0)
-- initialize the timer/ticks
gamestate.begin_time = SDL.SDL_GetTicks();
gamestate.last_update_ticks = gamestate.begin_time;

end

Removing any actors that are no longer used and adding any new actors is handled by an
update_tick function. Two Lua for loops iterate through each actor in the game. The first
removes any actors that aren’t active and adds any new ones:

for i = 1, getn(gamestate.actors) do
if gamestate.actors[i].active then

-- add the actors
tinsert(gamestate.new_actors, gamestate.actors[i])

end
end

The former gamestate.actor table is then replaced with the new table in a quick swap:

gamestate.actors = gamestate.new_actors
gamestate.new_actors = {}

Then a second for loop calls an update for each actor in the table:

-- call update for each actor
for i = 1, getn(gamestate.actors) do

gamestate.actors[i]:update(gamestate)
end

264 7. Getting Specific with Games in Lua

07-gpPY07.qxd 11/10/03 12:36 AM Page 264

After the actors have been updated, each needs to be redrawn, as does the screen. A quick
render_frame function does this work, first clearing the current screen and then redrawing
each actor rect() within gamestate.actors:

function render_frame(screen, background)
-- When called renders a new frame.

-- First clears the screen
SDL.SDL_FillRect(screen, NULL, background);
-- re-draws each actor in gamestate.actors
for i = 1, getn(gamestate.actors) do

gamestate.actors[i]:render(screen)
end
-- updates
SDL.SDL_UpdateRect(screen, 0, 0, 0, 0)

end

Most of the actual game-engine work is done by this next little function, called
gameloop_iteration. It is called each time the engine loops, and is responsible for calling all
the other rendering functions and keeping track of time. First gameloop_iteration calls
handle_event on any pending events in the gamestate’s event_buffer (checking first that the
buffer exists):

function gameloop_iteration()
-- call this to update the game state. Runs update ticks and renders
-- according to elapsed time.

-- if buffer doesnt exist make it so
if gamestate.event_buffer == nil then

gamestate.event_buffer = SDL.SDL_Event_new()
end
-- run handle_even on any pending events
while SDL.SDL_PollEvent(gamestate.event_buffer) ~= 0 do

handle_event(gamestate.event_buffer)
end

gameloop_iteration then uses SDL_GETTICKS() to set the local time variable and compares this
with the gamestate to see if an update needs to occur. If the engine needs to update, then
update_tick is called and the time count is updated:

-- run any necessary updates
local time = SDL.SDL_GetTicks();
local delta_ticks = time - gamestate.last_update_ticks
local update_count = 0
while delta_ticks > gamestate.update_period do

update_tick();
delta_ticks = delta_ticks - gamestate.update_period
gamestate.last_update_ticks = gamestate.last_update_ticks +

265Gravity: A Lua SDL Game

07-gpPY07.qxd 11/10/03 12:36 AM Page 265

gamestate.update_period
update_count = update_count + 1

end

Finally, render_frame has to be called to redraw any actors and the screen background if an
update has occurred:

-- if we did any updates, then render a frame
if update_count > 0 then

render_frame(gamestate.screen, gamestate.background)
gamestate.frames = gamestate.frames + 1

end
end

The actual engine game loop (engine_loop) runs while the gamestate is active. The
engine_loop calls gameloop_iteration each time its own while loop fires. The engine_loop
then cleans out the buffer. If the gamestate is no longer active, then engine_loop calls
SDL_QUIT:

function engine_loop()
-- While loop calls gameloop_iteration

while gamestate.active do
gameloop_iteration()

end
-- clean up
if event_buffer then

SDL.SDL_Event_delete(event)
end
SDL.SDL_Quit();

end

Actors
Everyone wants to be an actor—or a computer game programmer—these days. Actors in
Gravity aren’t as revered or lucky as the Hollywood variety, however. They are the constructs
that can be interacted with in the game, as shown in brief in Figure 7.9. These base actor
functions will be used by the other objects in the game.

Learning how to update an actor’s position on the screen is the first task here, and this is
where the vector functions get to stretch their legs. Velocity is multiplied by how much time
has elapsed in the gamestate loop since the last update:

function actor_update(self, gs)
-- Updates than actor using vector functions

local dt = gamestate.update_period / 1000.0
-- update according to velocity & time
local delta = self.velocity * dt
self.position = self.position + delta

266 7. Getting Specific with Games in Lua

07-gpPY07.qxd 11/10/03 12:36 AM Page 266

Since this is a 2D Asteroids-type game, objects on the screen should wrap around to the
other side when they hit an edge. This effect is achieved with simple math applied to the
position and the game screen (gs.screen) before actor_update ends:

-- wrap around at screen edge
if self.position.x < -self.radius and self.velocity.x <= 0 then

self.position.x = self.position.x + (gs.screen.w + self.radius * 2)
end
if self.position.x > gs.screen.w + self.radius and self.velocity.x >= 0 then

self.position.x = self.position.x - (gs.screen.w + self.radius * 2)
end
if self.position.y < -self.radius and self.velocity.y <= 0 then

self.position.y = self.position.y + (gs.screen.h + self.radius * 2)
end
if self.position.y > gs.screen.h + self.radius and self.velocity.y >= 0 then

self.position.y = self.position.y - (gs.screen.h + self.radius * 2)
end

end

A function that blits actors onto the screen using show_sprite is the next thing to create
after determining the actor’s position:

function actor_render(self, screen)
-- Blit the given actor to the given screen

show_sprite(screen, self.sprite, self.position.x, self.position.y)
end

267Gravity: A Lua SDL Game

Figure 7.9

Actors are initialized in
Gravity

07-gpPY07.qxd 11/10/03 12:36 AM Page 267

The final curtain on actors is to build an actor constructor. The constructor will take in the
sprite bitmap and keep track of position, velocity, and radius, and then return the actor in a
nice, neat Lua table:

function actor(t)
-- actor constructor. Pass in the name of a sprite bitmap.

local a = {}
-- copy elements of t
for k,v in t do

a[k] = v
end
a.type = "actor"
a.active = 1
a.sprite = (t[1] or t.sprite and sprite(t[1] or t.sprite)) or nil
a.position = vec2(t.position)
a.velocity = vec2(t.velocity)
a.radius = a.radius

or (a.sprite and a.sprite.w * 0.5)
or 0

a.update = actor_update
a.render = actor_render
return a

end

Obstacles
The game obstacles are cows and planets. These obstacles must track a number of different
things in order to make the game interesting.

■ Obstacles can take damage. Some of the bigger objects will survive collisions with several
smaller objects, so they need to track how much damage they can take.

■ Obstacles need to know when they collide with something.
■ Obstacles are drawn to each other by gravity, and so they need to keep track of other nearby

obstacles.

Obstacles should also occasionally appear on the screen. They should come from offscreen
at a random place, at a random speed, and travel somewhat towards the center of the
screen. These object capabilities are handled with the following functions:

■ obstacle_update(). Handles gravity, movement, and collisions.
■ handle_obstacle_collision(). Called when a collision is detected.
■ obstacle_take_damage(). Damages the object.
■ pick_obstacle_image(). Chooses one of the obstacle images at random.
■ obstacle(). The obstacle constructor.
■ obstacle_creator(). Randomly places obstacles onto the screen.

The obstacle_update is the first function to tackle. It watches for collisions by first updating
itself and then keeping track of where the other actors are:

268 7. Getting Specific with Games in Lua

07-gpPY07.qxd 11/10/03 12:36 AM Page 268

function obstacle_update(self, gs)
-- update this obstacle. watch for collisions with other actors.

-- move ourself
actor_update(self, gs)
local dt = gamestate.update_period / 1000
local accel = vec2()
-- check for the position of other actors
for i = 1, getn(gs.actors) do

local a = gs.actors[i]

Actors with a large mass will draw other actors towards themselves. This is simulated with
the GRAVITY_CONSTANT, the two actors’ mass, and some math.

The Newtonian concept of attraction takes the mass of two objects, the distance between
them, and the constant of gravity to determine how strong the attraction is between the two
objects (see Figure 7.10).

This law is usually expressed by (G*m1)*(G*m2)/r^2, where G is the gravitational constant,
m1 is the mass of the first object, m2 is the mass of the second object, and r is the distance
between the two objects.

This formula is used in obstacle_update by taking the GRAVITY_CONSTANT and the mass of an
object (a.mass) and accelerating actors towards other actors:

-- if the actor has mass then compute a gravitational acceleration towards it
if a.mass then

local r = a.position - self.position
local d2 = r * r

269Gravity: A Lua SDL Game

Figure 7.10

Newton’s law of
attraction (i.e. universal
gravitation)

07-gpPY07.qxd 11/10/03 12:36 AM Page 269

if d2 < 100 * 100 then
local d = sqrt(d2)
if d * 2 > self.radius then

accel = accel + r * ((GRAVITY_CONSTANT * a.mass) / (d2 * d))
end

end
end

Then obstacle_update needs to check for actual collisions and handle them by calling
handle_collision. You end the function by resetting the actor’s velocity:

-- check for collisions, and respond
if a and a ~= self and a.collidable then

local disp = a.position - self.position
local distance_squared = disp * disp
local sum_radius_squared = (a.radius + self.radius) ^ 2
if distance_squared < sum_radius_squared then

-- we have a collision, call the collision handler.
handle_collision(self, a)

end
end

end
self.velocity = self.velocity + accel * dt

end

The next function, handle_obstacle_collision, fires when the obstacles collide. It first makes
sure that the collision is between two obstacles and not between an obstacle and the player;
that would be handled by a different function. It then damages the objects that collide by
calling obstacle_take_damage:

function handle_obstacle_collision(a, b)
-- handles a collision between two obstacles, a and b.

--Make sure we are handling collison between two obstacles, otherwise exit
if a.type == "obstacle" and b.type == "obstacle" then

-- impulse will be along the displacement vector between the two obstacles
local normal = b.position - a.position
normal:normalize()
local relative_vel = b.velocity - a.velocity
-- Damage the objects that collide
local collision–energy = 0.1 * (relative_vel * realtive_ve;) * (a.mass + b.mass)
local split_dir = vec2{ normal.y, -normal.x }
obstacle_take_damage(a, split_dir, -normal, collision_energy)
obstacle_take_damage(b, split_dir, normal, collision_energy)

end
end

270 7. Getting Specific with Games in Lua

07-gpPY07.qxd 11/10/03 12:36 AM Page 270

The obstacle_take_damage is called in the event of a collision. Some objects may survive a
collision, but at least one (the one with lesser mass) will be destroyed. The smallest objects
(cows) will always be destroyed:

function obstacle_take_damage(a, split_direction, collision_normal, collision_energy)
-- damage the obstacle; if it's damaged enough, destroy

local split_speed = sqrt(2 * collision_energy / a.mass) * 0.35
-- obstacle takes damage; when its damage reaches 0 it dies
a.hitpoints = a.hitpoints - collision_energy / 2000
if a.hitpoints > 0 then

-- collision is not violent enough to destroy this obstacle
return

end

local new_size = a.size - 1
if new_size < 1 then

-- The smallest obstacle always disintegrates.
a.active = nil
return

end
-- kill a
a.active = nil

end

Pick_obstacle_image is a short random function that will pick which object to use from the
image_table using Lua’s built-in random:

function pick_obstacle_image(size)
local image_table = obstacle_images[size]
-- pick one of the obstacle images at random
return image_table[random(getn(image_table))]

end

The obstacle constructor uses the actor constructor as its building block. It then sets its
type to "obstacle", flags it as collideable, makes sure it has one of the three obstacle sizes,
and then sets variables for radius, size, and speed. It also assigns the obstacle to
obstacle_update:

-- constructor
-- start with a regular actor

local a = actor(t)
a.type = "obstacle"
a.collidable = 1
a.size = a.size or 3 -- make sure caller defined one of the three sizes of obstacle
a.sprite = sprite(pick_obstacle_image(a.size))
a.radius = 0.5 * a.sprite.w
a.mass = obstacle_masses[a.size]
a.hitpoints = a.mass * a.mass

271Gravity: A Lua SDL Game

07-gpPY07.qxd 11/10/03 12:36 AM Page 271

-- implement a speed-limit on obstacles
local speed = sqrt(a.velocity * a.velocity)
if speed > SPEED_TURNOVER_THRESHOLD then

local new_speed = SPEED_TURNOVER_THRESHOLD + sqrt(speed -
SPEED_TURNOVER_THRESHOLD)

a.velocity = a.velocity * (new_speed / speed)
end
-- attach the behavior handlers
a.update = obstacle_update
return a

end

Math functions like sqrt() have a reputation for being slow, especially when complex math
has to be calculated on-the-fly. Having to process sudden large computations can cause an
otherwise fluidly running game to grind to a halt. One way to speed up sqrt is to cache any
square root values that are used more than once. Let’s say you had the following code:

a* sqrt(s)
b* sqrt(s)
c = a+b

Instead of running the sqrt() function twice, run it once first and store the value:

square = sqrt(s)
a*square
b*square
c = a+b

A second trick is to do common math ahead of time and place it in a table for the program.
Let’s say you did a log of power of multiplication in a program; you could work out com-
mon equations first and put them in a table like Table 7.2.

272 7. Getting Specific with Games in Lua

TABLE 7.2 Common Power

Initial Value ^2 ^ 3

2 4 8

3 9 27

4 16 64

5 25 125

6 36 216

07-gpPY07.qxd 11/10/03 12:36 AM Page 272

When the code needs one of these values, it gets a reference to the appropriate row and
column instead of calculating on-the-fly.

The very last thing obstacles need to do is appear occasionally on the screen to harass the
player. This is achieved by creating an actor that sets a countdown timer. When the timer
reaches 0, the actor calls the obstacle construct, creates the obstacle on the edge of the
screen, and sets it flying towards the middle somewhere. Then it starts the timer over again:

-- random obstacle creator
function obstacle_creator(t)
-- constructs an actor that randomly spawns a new obstacle periodically

a = {}
a.active = 1
a.type = "obstacle_creator"
a.collidable = nil
a.position = vec2{ 0, 0 }
a.velocity = vec2{ 0, 0 }
a.sprite = nil
-- set the random timer countdown
a.period = t.period or t[0] or 100 -- period between spawning obstacles
a.countdown = a.period
a.render = function () end
a.update =

function (self, gs)
self.countdown = self.countdown - gs.update_period
if self.countdown < 0 then

-- timer has expired; spawn an obstacle
-- pick a random spot around the edge of the screen
local w, h = gs.screen.w, gs.screen.h
local edge = random(w * 2 + h * 2)
local pos
if edge < w then

pos = vec2{ edge, 0 }
elseif edge < w*2 then

pos = vec2{ edge - w, h }
elseif edge < w*2 + h then

pos = vec2{ 0, edge - w*2 }
else

pos = vec2{ w, edge - (w*2 + h) }
end
-- aim at the middle of the screen
local vel = vec2{ w/2, h/2 } - pos
vel:normalize()
vel = vel * (random(400) + 50)
gs:add_actor(

obstacle{
size = random(3),

273Gravity: A Lua SDL Game

07-gpPY07.qxd 11/10/03 12:36 AM Page 273

position = pos,
velocity = vel

}
)
-- reset the timer
self.countdown = self.period

end
end

return a
end

The Player
The player is arguably the most important game piece. Much of the infrastructure the
player needs (such as sprite handling and actor functions) has already been laid out.
However, you still need functions to handle the following:

■ Updating the player
■ Player collision
■ The player constructor

The player_updater function handles updating the player; it looks similar to the
object_updater function. The player object is handled just like an operating system’s mouse
cursor. The player’s position is based on the mouse position. Using SDL_GetMouseState, the
player position is updated, and checks for any collisions are made. If there is a collision,
handle_player_collision is called:

function player_update(self, gs)
-- update the player and watch for collisions

local dt = gamestate.update_period / 1000
-- get the mouse position, and move the player position towards the mouse position
local m = {}
m.buttons, m.x, m.y = SDL.SDL_GetMouseState(0, 0)
local mpos = vec2{ m.x, m.y }
local delta = mpos - self.position
local accel =

delta * 50 -- move towards the mouse cursor
- self.velocity * 10 -- damping

self.velocity = self.velocity + accel * dt
-- move ourself
actor_update(self, gs)
-- check for collisions against all other actors
for i = 1, getn(gs.actors) do

local a = gs.actors[i]
-- check for collisions, and respond
if a and a ~= self and a.collidable then

local disp = a.position - self.position

274 7. Getting Specific with Games in Lua

07-gpPY07.qxd 11/10/03 12:36 AM Page 274

local distance_squared = disp * disp
local sum_radius_squared = (a.radius + self.radius) ^ 2
if distance_squared < sum_radius_squared then

-- we have a collision
-- call the collision handler.
handle_player_collision(self, a)

end
end

end
end

The handle_player_collision also looks quite a bit like the handle_obstacle_collision,
except it’s shorter because there is no concern over damage. A collision will kill the player
by setting its active method to nil:

function handle_player_collision(a, b)
-- handles a collision between a player, a, and some other object, b

-- impulse will be along the displacement vector between the two obstacle
local normal = b.position - a.position
normal:normalize()
local relative_vel = b.velocity - a.velocity
if relative_vel * normal >= 0 then

-- don't do collision response if obstacles are moving away from each other
return

end
-- Kill the player
a.active = nil

end

The player constructor is similar to the other constructors that have been built, except that
it’s smaller. The actor template is used initially, then the constructor loads the moon.bmp
as its image, sets itself as collideable, gives itself a mass (yes, the player’s gravity attracts
objects) and radius, and sets itself to run player_update.

function player(t)
-- constructor

-- start with a regular actor
local a = actor(t)
a.type = "player"
a.collidable = 1
a.sprite = sprite("moon.bmp") -- or error("can't load")
a.radius = 0.5 * a.sprite.w
a.mass = 10
-- attach the behavior handlers
a.update = player_update
return a

end

275Gravity: A Lua SDL Game

07-gpPY07.qxd 11/10/03 12:36 AM Page 275

The player object needs a few utility functions with which to keep track of his lives and
whether he’s entered the game. The player cursor will have different visual states before the
game starts, while playing, and after a collision, so these need to be kept track of as well.
This is done with corresponding functions in the player_manager.

First is the player_manager_update. It keeps track of the player state, which is either pre-game
or setup, active or playing, or deceased. If the player has died, player_manager_update checks
to see if there are any lives left by checking the MOONS_PER_GAME constant. If there are, there
is a short delay before the player can launch his next moon. These are all handled by a
handful of Lua if elseif then statements:

function player_manager_update(self, gs)
-- keep track of game functions

if self.state == "pre-setup" then
-- delay, and then enter setup mode.
self.countdown = self.countdown - gamestate.update_period
if self.countdown <= 0 then

self.state = "setup"
self.cursor.active = 1
gamestate:add_actor(self.cursor)

end
elseif self.state == "setup" then

if not self.cursor.active then
-- player has placed the moon. start playing.
self.player.active = 1
self.player.position = self.cursor.position
gamestate:add_actor(self.player)
-- deduct the moon that we just placed.
self.moons = self.moons - 1
self.state = "playing"

end
elseif self.state == "playing" then

if not self.player.active then
-- player has died.
if self.moons <= 0 then

-- game is over
self.state = "pre-attract"
self.countdown = 1000

else
-- set up for next moon
self.state = "pre-setup"
self.countdown = 1000

end
end

elseif self.state == "pre-attract" then
-- delay, and then enter attract mode
self.countdown = self.countdown - gamestate.update_period

276 7. Getting Specific with Games in Lua

07-gpPY07.qxd 11/10/03 12:36 AM Page 276

if self.countdown <= 0 then
self.state = "attract"

end
elseif self.state == "attract" then

local m = {}
m.buttons, m.x, m.y = SDL.SDL_GetMouseState(0, 0)
if m.buttons > 0 then

-- start a new game.
self.state = "pre-setup"
self.moons = MOONS_PER_GAME

self.countdown = 1000
end

end
end

The function called player_manager_render comes in at this point to display moon sprites
that show how many lives the player has left:

function player_manager_render(self, screen)
if self.state == "attract" then

show_sprite(screen, self.game_over_sprite, screen.w / 2, screen.h / 2)
else

-- show the moons remaining
local sprite = self.player.sprite
local x = sprite.w
local y = screen.h - sprite.h
for i = 1, self.moons do

show_sprite(screen, sprite, x, y)
x = x + sprite.w

end
end

end

The player_manager constructor is the last function you need to wrap up the player. Like the
constructors, this function builds a Lua table that stores the variable you need, such as
which player mouse curser you currently use, how many lives are left, and who to call for
rendering and updating:

function player_manager(t)
-- constructor

local a = {}
for k, v in t do a[k] = v end -- copy values from t
a.active = 1
a.moons = MOONS_PER_GAME
a.state = "setup"
a.cursor = cursor{
}

277Gravity: A Lua SDL Game

07-gpPY07.qxd 11/10/03 12:36 AM Page 277

gamestate:add_actor(a.cursor)
a.player = player{

position = { gamestate.screen.w / 2, gamestate.screen.h / 2 },
velocity = { 0, 0 },

}
a.obstacle_creator.period = BASE_RELEASE_PERIOD
a.game_over_sprite = sprite("finish.bmp")
a.update = player_manager_update
a.render = player_manager_render
return a

end

Starting the Game
Almost finished! Only a few functions remain. The mouse cursor must be properly tracked
and you need a check for mouse buttons that will start gameplay. The mouse cursor is set
initially to a start.bmp graphic that lets the player choose where to position the moon when
in the playing window. All of these actions are accomplished with cursor_update and the
cursor constructor, and all the information is held within Lua tables:

function cursor_update(self, gs)
-- update the cursor. follow the mouse.

local m = {}
m.buttons, m.x, m.y = SDL.SDL_GetMouseState(0, 0)
self.position.x = m.x
self.position.y = m.y
if m.buttons ~= 0 then

-- player has clicked
self.active = nil

end
end

function cursor(t)
-- constructor

-- start with a regular actor
local a = actor(t)
a.type = "cursor"
a.sprite = sprite("start.bmp") -- or error("can't load")
a.radius = 0.5 * a.sprite.w
-- attach the behavior handlers
a.update = cursor_update
return a

end

Initializing the game engine is a pretty straightforward endeavor after all the work that’s
already been done. The engine_init function is called, and a slew of obstacles are in the
gamestate with add_actor:

278 7. Getting Specific with Games in Lua

07-gpPY07.qxd 11/10/03 12:36 AM Page 278

engine_init{}
-- Generate a bunch of obstacles
for i = 1,10 do

gamestate:add_actor(
obstacle{

position = { random(gamestate.screen.w),
random(gamestate.screen.h) },

velocity = { (random()*2 - 1) * 100, (random()*2 - 1) * 100 }, -
- pixels/sec

size = random(3)
}

)
end

Then create an obstacle_creator and a player_manager and let them duke it out:

-- create an obstracle creator
creator = obstacle_creator{}
gamestate:add_actor(creator)
-- create a player manager
gamestate:add_actor(

player_manager{
obstacle_creator = creator

}
)

Last but not least, call the engine_loop(), and lo-and-behold, the game is running:

-- run the game
engine_loop()

The Lua C API
Ah, the power of C. Anything that can be done
directly in Lua can also be done in the Lua C API,
including manipulating variables and tables, call-
ing functions, controlling the garbage collector,
or loading Lua from strings or files.

Typically, the Lua C library is compiled into an
application or run as a shared library. This is the
most common way of accessing Lua in a game
program. Altogether, the Lua library is very small,
so it is not uncommon to find the entire source
tree included with a distributed game.

279The Lua C API

TIP
If you want to delve deeper
into the C family, check out
C Programming for the Absolute
Beginner, by Michael Vine, or
C++ Programming for the
Absolute Beginner, by Dirk
Henkemans and Mark Lee.

07-gpPY07.qxd 11/10/03 12:36 AM Page 279

Opening Up Lua
Before calling any API function, a pointer to the Lua state must be passed as the first argu-
ment. This pointer opens up Lua. The lua_open command (introduced in Chapter 6) is what
fires up the Lua state. All API functions need to set lua_open up as their very first argument.

In order to use lua_open in a C environment, the lua.h file must be included. The lua.h file
is a C header file that defines the Lua API. However, since Lua is ANSI C, any inclusions of
the Lua library must be wrapped within an extern C command, otherwise the compiler will
mangle the names and not be able to call the commands properly. This may sound compli-
cated, but in practice it looks like this:

extern "C"
{
#include <lua.h>
}

When the Lua state machine is finished with its job, it should be closed using the
lua_close() command. This command destroys all objects in the given Lua state via the
garbage collector. Therefore, a full instance of Lua wrapped within C code looks something
like this:

extern "C"
{
#include <lua.h>
}
lua_state *Mylua lua_open (0)
// Many lines of

280 7. Getting Specific with Games in Lua

Name Mangling

Compilers have a habit of modifying the names of functions and
objects when compiling.This is done so that the compiler can include
extra information, provide type linkage, and support function overload-
ing.This modification is often called mangling. Particularly confusing is
that each compiler has its own way of mangling names and laying out
the compiled objects.This can cause problems when working with
more than one language, as a second language cannot predict how a
particular object or command may be mangled. Luckily, the extern
command can be used to disable name mangling entirely.

07-gpPY07.qxd 11/10/03 12:36 AM Page 280

// Useful Lua code that
// Do something
lua_close (MyLua)

More or less, every function in the Lua API deals with the Lua state or the current state of
the Lua interpreter (you will often hear Lua being referred to as a "state machine" when
used in this way). The Lua state keeps track of
functions, globals, and any interpreter-related
information. When the Lua state is closed, all
the Lua objects and any dynamic memory
used by the state are freed.

Whenever Lua calls C, the called function
gets a virtual stack. This stack contains any
arguments to the C function, is used to pass
values to and from C, and will hold any values
the C functions push back. Stacks can hold
more than one element and are represented
by an index, the top element of which can be
called with lua_gettop:

Int lua_gettop (lua_State *L);

Stack Commands
Lua uses a stack to pass values to and from C. Each element in this stack represents a value
(nil, number, and so on) that Lua uses. The Lua API offers a number of useful commands
for manipulating the stack, querying stack functions, and translating C to Lua. These com-
mands are listed and summarized in Table 7.3.

Stack commands are normally given as arguments to the lua_State, a pointer to Lua (*Lua),
and/or the appropriate index in the stack. Push functions receive a C value, convert it to a
corresponding Lua value, and then push the result onto the stack.

The Lua stack is is the primary means of communication between C and Lua. There are no
Lua type values in C, only functions that manipulate the stack. All values, functions, and so
on are pushed onto or pulled from the stack.

Variables
Lua variables in the API do not need to be declared, and by default are considered global
in scope unless specified otherwise. The variables that store Lua values are global values,
local values, or table fields.

Local values can be declared anywhere within a block or chunk of Lua code. They are lexi-
cally scoped. This means the scope of variables begins at the first statement after their dec-
laration and lasts until the end of the innermost block that includes the declaration.

281The Lua C API

NOTE
On some platforms, you may
not need to call the close
state, because resources are
released normally when the
program ends. Long-running
programs or daemons may need
to be released occasionally.

07-gpPY07.qxd 11/10/03 12:36 AM Page 281

282 7. Getting Specific with Games in Lua

TABLE 7.3 Lua API Stack Commands

Command Type Purpose

lua_concat (); void Concatenates the values at the top of a
stack, pops them, and leaves the result
at the top

lua_equal (); int Compares two items on the stack

lua_insert (); void Moves the top element to a given index

lua_isboolean (); int Returns 1 if the object is compatible,
otherwise 0

lua_iscfunction (); int Returns 1 if the object is compatible,
otherwise 0

lua_isfunction (); int Returns 1 if the object is compatible,
otherwise 0

lua_isnil (); int Returns 1 if the object is compatible,
otherwise 0

lua_isnumber (); int Returns 1 if the object is compatible,
otherwise 0

lua_istable (); int Returns 1 if the object is compatible,
otherwise 0

lua_isstring (); int Returns 1 if the object is compatible,
otherwise 0

lua_isuserdata (); int Returns 1 if the object is compatible,
otherwise 0

lua_islightuserdata (); int Returns 1 if the object is compatible,
otherwise 0

lua_lessthan (); int Compares two items on the stack

lua_pushboolean (); void Pushes Boolean value onto the stack
and returns a pointer to the Boolean

lua_pushcfunction (); void Pushes a C function onto the stack and
returns a pointer to the function

Continued

07-gpPY07.qxd 11/10/03 12:36 AM Page 282

283The Lua C API

lua_pushfstring (); void Pushes a formatted string onto the
stack and returns a pointer to the string

lua_pushlightuserdata (); void Pushes light user data onto the stack
and returns a pointer

lua_pushlstring (); void Makes an internal copy of given string,
pushes, and returns a pointer to the string

lua_pushnil (); void Pushes a nil value onto the stack and
returns a pointer to the value

lua_pushnumber (); void Pushes a numeric value onto the stack and
returns a pointer to the number

lua_pushstring (); void Pushes proper C strings onto the stack
and returns a pointer to the string

lua_pushvalue (); void Pushes a copy of an element to a given index

lua_pushvfstring (); void Pushes a string onto the stack and
returns a pointer to the string

lua_rawequal (); int Compares values for primitive equality

lua_remove (); void Removes element at the given index

lua_replace (); void Replaces given index with given element

lua_settop (); void Sets the stack top to a given index

lua_State struct Dynamic structure that holds all Lua states

lua_totrhead(); int Converts a value on the stack into a C
thread

lua_strlen (); int Gets a string’s length

lua_tocfunction (); int Converts a value on the stack into a C
function

lua_tonumber (); int Converts a Lua value at given index to a C
type number. Number is a double by default

lua_tostring (); const Converts a Lua value at the given index
char to a C type string (in C a const *char)

lua_touserdata (); void Translates userdata to a specific C type

lua_type (); int Returns the type of a value in a stack

07-gpPY07.qxd 11/10/03 12:36 AM Page 283

All global variables exist as fields in ordinary Lua tables called environment tables or simply
environments. Functions written in C and exported to Lua all share a common global envi-
ronment. Each function written in Lua has its own reference to an environment, so that all
global variables in that function refer to that environment table. When a function is cre-
ated, it inherits the environment from the function that created it.

Userdata
Userdata is used to represent C values. Lua supports two types, full userdata and light user-
data. Full userdata represents a block of memory and light user data represents a pointer.
Both are considered objects.

The lua_type command will return LUA_TUSERDATA for full userdata or LUA_TLIGHTUSERDATA
for light userdata when checking an existing userdata. New userdata can be created with
the lua_newuserdata () function:

void *lua_newuserdata (lua_stat *MyLua, size_t size);

This allocates a new memory block, pushes onto the stack a new userdata with the block
address, and then returns the address.

Tables
The Lua API also has a few functions for manipulating metatables in objects. You create
tables by calling the function lua_newtable. This function creates a new, empty table and
then pushes it onto the stack. The function lua_gettable is provided for reading a value
from a table that resides somewhere on the stack; when lua_gettable is given an index that
points to the table, it will read and return the value.

Interestingly, in the Lua API, all global variables are kept within the ordinary Lua tables
called environments. The initial environment that is created is called the global environ-
ment, and it can be pseudo-indexed at LUA_GLOBALSINDEX. Regular table operations can be
used over an environment table to access and change these global values (using
lua_pushstring, for example). The global environment of a thread can be changed using
lua_replace.

The lua_getfenv and lua_setfenv functions are used to get and set the environment of Lua
functions. First lua_getfenv pushes the environment table of the function on the stack at a
given index, and then lua_setfenv pops a table from the stack and sets it as the new envi-
ronment for the function at a given index.

There are a number of other useful Lua functions for dealing with tables. Lua_getmetatable
pushes the metatable of an object on the stack, and lua_setmetatable sets the table on the
top of a stack as a new metatable for that object and then pops the table. The lua_load
command is used to load up Lua chunks. It automatically detects whether a chunk is text or
binary, and then loads it accordingly.

int lua_load (lua_State *MyLua, lua_reader, void *Mydata, const char *MyChunk);

284 7. Getting Specific with Games in Lua

07-gpPY07.qxd 11/10/03 12:36 AM Page 284

The function lua_rawget gets the real value of a table key. To store the value into a table
that resides somewhere in the stack, the key and the value are pushed by calling lua_set-
table. The lua_rawest function is used to set the real value of any table index. Tables can be
traversed with int lua_next, which pops a key from the stack and pushes a key-value pair
from the table. If there are no more elements left, then lua_next returns a 0.

Tables are created by calling lua_newtable:

void lua_newtable (lua_State *MyLua);

Reading the value in a table on the stack is done by calling the lua_gettable command with
a specific index:

lua_gettable (lua_State *MyLua, int specific_index);

Because of their universality and flexibility, tables are often used as arrays in the API.

Threads
Lua offers partial support for multiple threads. Since the support is pretty basic, you will
often find programs that instead incorporate an existing C library offering full multi-
threading.

Adding a new thread to the Lua state can be done by using the lua_newthread function:

Lua_State *lua_newthread (lua_State *L);

The lua_newthread function pushes the thread onto the stack and then returns a pointer to
lua_State that represents this new thread. All the global objects are then shared between
the different threads, but this new thread has its own independent runtime stack. Each
thread also has an independent global environment table.

Manipulating an existing thread can be accomplished by using the lua_resume and
lua_yield functions, which allow one to suspend or resume running threads. Lua threads
can be closed using the lua_closethread () function.

285The Lua C API

TIP
Some of you C buffs are probably wondering how Lua handles arrays. Lua does
have functions to work with C arrays, which are treated as Lua tables and indexed
by numbers. Lua basically turns Lua tables into arrays indexed by number keys.
The API uses two commands to accomplish this: lua_rawgeti, to push the value of
elements into the table at a given stack position, and lua_rawseti, for setting the
value of elements of a table at a given stack position.The lua_getn command is a
third function that will get the number of elements in the table/array.

07-gpPY07.qxd 11/10/03 12:36 AM Page 285

Calling Functions
When C and Lua are working in tandem, both C and Lua functions can be called. For C
functions to work, you must do the following:

1. Register the C function with Lua.

2. Push the function to be called onto the stack.

3. Push any arguments to the function onto the stack.

4. Call the function with lua_call.

The lua_call function looks something like this:

int lua_call (lua_State *MyLua, int arguments, int results);

The arguments and results integers are the numbers of arguments and results that passed
onto the stack.

If a C function needs to keep a reference to a Lua value outside of its lifespan, it must cre-
ate a reference to the value. These references are stored and manipulated and released
with lua_ref, lua_getref, and lua_unref.

All arguments and the function value are then popped from the stack. Lua makes sure that
the returned values fit on the stack, and that the function results are pushed in direct order
so that the last result is on the top. The lua_call function propagates any errors in this
process upwards, and a special function, lua_pcall, is used to track error messages that flow
this way.

C functions can also be used to extend Lua, a technique that is covered in Chapter 12,
along with extending Ruby and Python in the same way.

Performing Actions
Lua’s C API has equivalent commands to the basic library that it uses when in C API mode.
These commands are listed in Table 7.4.

Out of all of these, lau_dostring is the one most likely to be encountered because it is used
to perform most Lua actions. Lua can also be executed in chunks written in a file or in a
string by using lua_dofile, lua_dostring, or the lua_dobuffer command.

When called with a NULL argument, lua_dofile executes the standard in (stdin) stream.
Both lua_dofile and lua_dobuffer are able to execute pre-compiled Lua chunks this way.
The lua_dostring command, however, can only execute source code.

The function lua_dostring calls the interpreter over a section of code contained in a
string. The lua_getglobal, lua_setglobal, lua_call, and lua_register are used to interpret
code files, set and manipulate global variables, call Lua functions, and make C functions
accessible to Lua.

286 7. Getting Specific with Games in Lua

07-gpPY07.qxd 11/10/03 12:36 AM Page 286

Summary
Lua’s capabilities should be fairly clear at this point, and SDL has been tackled for the second
time in this book. Here are a few important points before continuing to the next chapter:

■ Blitting is still the key to rendering objects in SDL, whether using Python or Lua.
■ Rects are still the key for blitting a sprite or object to the screen.
■ The key to utilizing the C API is the stack.
■ Tables in Lua are used everywhere. They make good containers for game objects and good

containers for global variables in the C API.
■ The most commonly found API function (after lua_state and lua_open) is lua_dostring.
■ The Lua API functions are held within the lua.h header, which must be wrapped in a C

extern command.

Questions and Answers
Q: I can’t seem to get the Gravity.lua code to work. Is there anything else I should try?

A: Make sure you have the luaSDL.dll file somewhere on your system path. If you are using
Windows, try this:

1.) Open up a command prompt: type cmd or command from the Run option on the Start menu.

2.) Navigate to the Gravity directory with the command line: use the cd command to change
directories to cd MY DOCUMENTS\BOOK\CHAPTER 7\GRAVITY.

3.) Type Lua.exe Gravity.lua

287Questions and Answers

TABLE 7.4 Lua API Actions

Basic Library Function Equivalent C API Function

dofile () lua_dofile

dostring () lua_dostring

error () lua_error

newtag () lua_newtag

tag () lua_tag

type () lua_type

07-gpPY07.qxd 11/10/03 12:36 AM Page 287

Q: Where can I learn more about the Lua API?

A: Lua-users.org Wiki pages have a few good, short API tutorials:

http://lua-users.org/wiki/

There is also an API section in the online 5.0 Lua manual:

http://www.lua.org/manual/5.0/

Exercises
1. Make a copy of the Gravity.lua source code and try playing with some of the variables to see what

happens. Change the width and height of the video screen, change the number of player lives,
and mess with the gravity and speed constants. What would you add or change to make the
game more interesting or fun?

2. Take a look at the Meteor Shower game that comes bundled with the LuaSDL after you have a
pretty good feel for Gravity to see what an even more complex Lua game looks like. Again,
make some changes to the constants and variables. See if there is anything you would change to
make the game more interesting or fun.

3. Take a few of the simple Lua code samples from the last chapter try to re-script them using the
C API.

288 7. Getting Specific with Games in Lua

07-gpPY07.qxd 11/10/03 12:36 AM Page 288

