

The future of PC Gaming: The possibilities of DirectX 10 Bob Drebin, Fellow, ATI Guennadi Riguer, Senior ISV Engineer, ATI

Games today...

- Look stunning
 - Feature detailed characters and complex materials
 - Contain lots of effects
 - light bloom, motion blur, HDR lighting

Oblivion - No HDR

Oblivion - HDR + 4x AA

Image courtesy of Bethesda Softworks LLC's The Elder Scrolls IV: Oblivion

Games today...

- Feel immersive
 - Feature convincing environments, vast areas to explore

Tomb Raider: Legend - Next Gen Content Off

Tomb Raider: Legend - Next Gen Content On

Image courtesy of Eidos's Tomb Raider: Legend

Today's games

- Play to more than just a Good Guy and Bad Guy
 - Can pick up and interact with particular objects
 - Can damage or destroy objects like walls or buildings

FEAR – Low Settings

FEAR – Max Settings

Image courtesy of Monolith's FEAR

Today's games

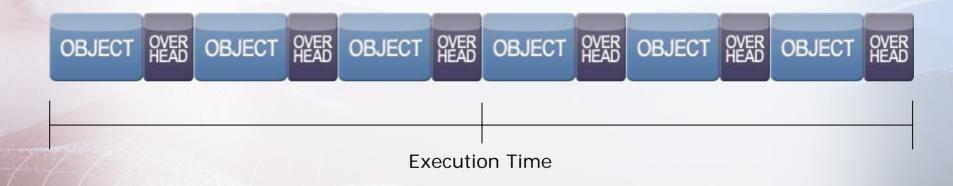
- Games today are a showcase of the genius of developers at bringing a false reality closer to real life than ever before
- We'll look at the constraints of today's GPUs and APIs that game developers are starting to hit


DirectX 9 overhead

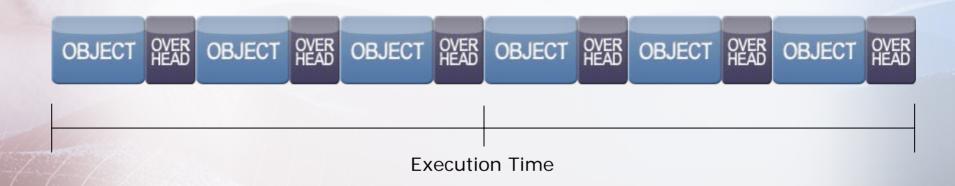
DirectX 9 overhead

DirectX 9 overhead

DirectX 9 overhead



DirectX 9 overhead


DirectX 9 overhead

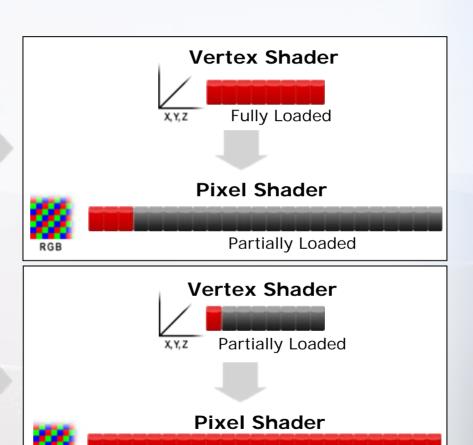
More objects, more changes to those objects = Longer execution time

DirectX 9 overhead

Longer execution time = Lower performance Also known as the small batch problem

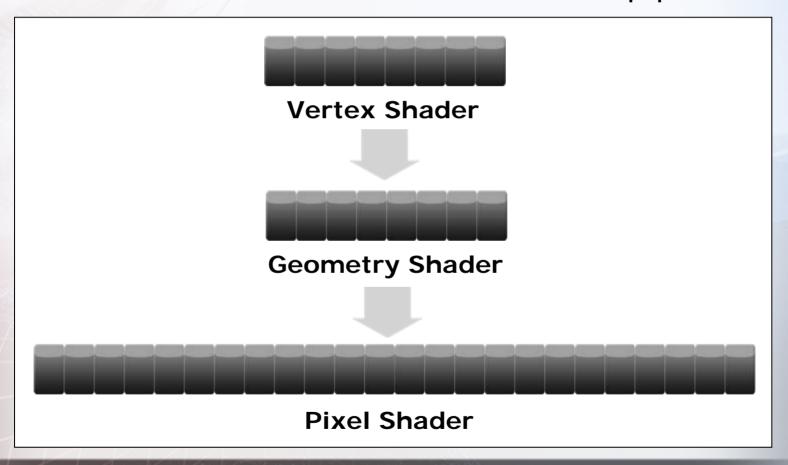
- Constraints related to computing resources
 - Limited to when you can use the GPU vs.
 the CPU
 - Makes a difference for large data set processing, for example, processing physics

Removing constraints: The Unified Shading Architecture


Traditional GPU

Complex Geometry Processing

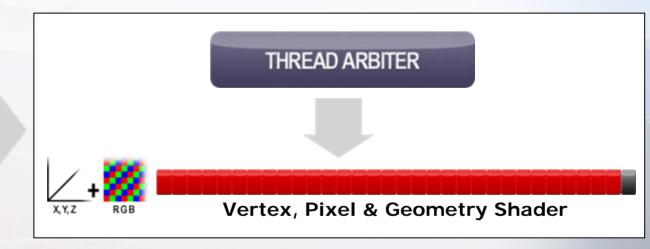
Complex Pixel Processing



Fully Loaded

Removing constraints: The Unified Shading Architecture

Traditional GPU extended to DirectX 10 pipeline

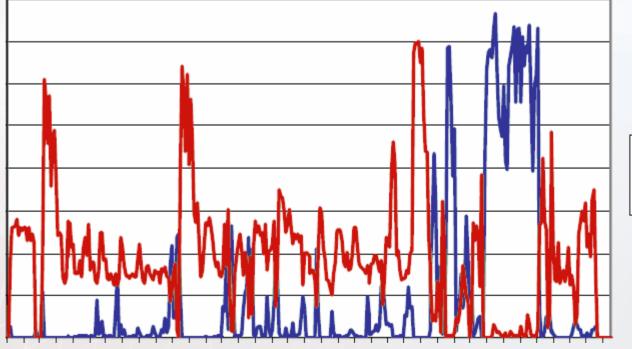


Removing constraints: The Unified Shading Architecture

Complex Geometry and Pixel Processing

Unified Shader Architecture

- The future of PC gaming hardware: the unified shader architecture
- Common Shader engine used to execute vertex, geometry and pixel, maximizing shader performance efficiencies
- First Unified Shading Architecture for the PC
 - ATI's DirectX 10 GPU
 - ATI's second Unified Shading Architecture



- Why is a unified architecture so important?
 - GPU's role moving from game rendering to game computing
 - DirectX 10 was designed with unified shading in mind
 - Common specification and feature set for Vertex, Geometry and Pixel Shaders
 - Flexible and efficient memory & texture access expected in all shader types

- Upcoming games will be both geometry and pixel compute intensive
 - In the same frame... but not at the same time!

Vertex
Shading
Pixel
Shading

- Upcoming games will be both geometry and pixel compute intensive
 - High geometry density with complex morph animations

- Upcoming games will be both geometry and pixel compute intensive
 - Significant image post-processing for HDR, depth of field, motion blur

 Centralizing compute resources is key as more, varied tasks migrate to the GPU

Physics & other game calculations

Polygon rendering

Geometry creation

Sorting

Image postprocessing

Morphing

Vertex processing

Unified Shading Today: Xbox360

- Games are being developed today for ATI's Unified Shading Architecture on XBox360
 - Microsoft Xbox360 games being designed to take advantage of the unified architecture's flexibility
 - Hard to go back once you've made the switch
 - Developers can continue with the advantage of Xbox360 development, and can easily port Xbox360 games to the PC and vice versa

Unified Shading Today: Xbox360

"The Xbox 360 is the most productive graphics development platform I have ever worked on -- clean and powerful hardware that is well documented and easy to exploit, coupled with absolutely first rate development tools."

- John Carmack, id Software

From tomorrow's hardware, to tomorrow's software: DirectX 10

- Based on the good points of past DirectX architectures, DirectX 10 has been written from the ground up
- More ways to process, access, move data
 - Geometry processing & streaming
 - Rendering to more than just pixels
 - Enables compute beyond rendering
- Programming limits significantly raised

Shader instructions, registers, constants, outputs

DirectX 10 helps remove constraints


- DirectX 10 reduces per-object state changing overhead
 - Dynamic indexing state within shader programs
 - vs heavyweight state setting outside of shader programs
 - State snapshots that can be loaded atomically
 - 1 call vs many

DirectX 9 overhead

DirectX 10 overhead

Current execution time is balanced like this:

API + DRIVER	GAME / APPLICATION
40%	60%

With less overhead, execution time could be balanced like this:

API + DRIVER	GAME / APPLICATION
20%	80%

- DirectX 10 will result in less overhead
 - Doesn't mean you'll see 80% of execution time dedicated to the game
 - It means that developers will be able to put more into their games

 DirectX 10 games on a unified shader architecture will have more...

Objects

 DirectX 10 games on a unified shader architecture will have more...

Clutter

 DirectX 10 games on a unified shader architecture will have more...

Materials

 DirectX 10 games on a unified shader architecture will have more...

Vegetation/Foliage

 DirectX 10 games on a unified shader architecture will have more...

Shadows

 DirectX 10 games on a unified shader architecture will have more...

Physics

Water, collisions, cloth, hair, particles, etc.

 DirectX 10 games on a unified shader architecture will have more...

Effects

Lighting, volumetric effects, etc.

 DirectX 10 games on a unified shader architecture will have more...

Character Animation

 DirectX 10 games on a unified shader architecture will have more...

... all scalable

Tomorrow's games

- Will look...
 - ... even better than today, closer to what our eyes see
 - ... more photorealistic, moving toward CG

Tomorrow's games

- Will feel...
 - ... richer, with detailed worlds where there's always something to see
 - ... unique and distinct

Tomorrow's games

- Will play...
 - ... with more opportunity for interaction
 - ... more realistically as a result of physics

The possibilities...

- These demos show off possibilities of DirectX 10 done on DirectX 9
- These aren't in-game demos, rather they're designed to showcase the programming possibilities and possible gaming concepts of tomorrow's games

Summary

- DirectX 10 combined with the unified shader architecture is the future of PC gaming
 - Moving beyond game rendering today, to game computing tomorrow
 - Removes the development constraints of today's games
 - Enables the next generation of visual effects in games
 - Is the only platform that truly maximizes compute resources
- DirectX 10 was designed with a unified shader in mind
 - Allows different kinds of shaders (vertex, geometry, pixel) to all work on the same instruction sets and access the same resources
 - Xbox360 games are already taking advantage of this model
 - No one understands the unified shader architecture better than ATI
 - ATI's unified shader for DirectX 10 represents the first unified shader ever for the PC, and the second generation of our unified shader technology
- Tomorrow's games will have enhanced:
 - Objects, clutter, materials, vegetation and foliage, shadows, effects (lighting, volumetric effects), physics (water, collision, cloth, particles, etc.), character animation

April 24, 2006 43